¥ HIBERNATE

A Short Guide to Hibernate 7

Version 8.0.0.Alphal

Table of Contents

o =] 72 ot 1
I o T 0 o T PP 2
Ll HIbErnate and JPA . . e e s 2
1.2. Writing Java code with Hibernate e e e e e e 4
G T =Y (o TR o 11 T=T o V- | < Pt 4
B 1= P 7
1.5. Stateful and Stateless SESSIONSottt ettt e e 7
1.6. Organizing PersiSteNCe LOZICo .ottt ettt e e e e e 8
1.7, TeStiNg PerSiStENCE LOZIC . . o . vttt ettt ettt e ettt et e e e e e e e e e 12
RS TR0 Y= T 13
2. Configuration @and DOOTSEIAPt e ettt e e e e e 14
2.1. Including Hibernate in your project build e 14
B O o o) o =1 B [<T o 1=T o e [ool 1= PP 15
2.3. Configuration USING JPA XML, . . .ottt ettt ettt et e e e et e e e e e e e e e e e e e e 16
2.4. Programmatic configuration USING JPA APlttt et e e e e e e 17
B TR =11 Ve Yoo 1T PP 17
2.6. Configuration using Hibernate properties file.o e e 18
2.7. Basic CONfIGUIAtioN SETLINGS . ..ottt et e ettt e et e e e e e e e e 18
2.8. AUTOMAtIC SCHEMA EXPOIT . .\ttt ettt e e ettt ettt e e e et e e e e e 19
2.9.Logging the generated SQLttt et e et e e e e e e 20
2.10. Minimizing repetitive mapping information e 21
2.11. QUOLING SQL Nt OIS .ottt ettt et e e e e 21
2.12. Nationalized character data in SQL SEIVETttt ittt et e e et e ettt ettt et e ettt 22
2.13. Date and time types and JDBCottt ettt e e e e e e e e e e e e 22
1 TR =1 1 PPt 23
I T01 R =0 Y o = TP 23
302 AL S Y P oottt e e 24
3.3 ENtity Class INNEIaNCE. . oottt e e e e e 24
B ldentifier attri UL . o e e e 25
3 5. Generated IdENti IS, . .ttt et e e e e e e e e 25
3.6. Natural Keys as identifiersttt e e e e e 27
3. 7. COMPOSITE IdENTI OIS . . oottt e et e e et e e e e e e e e 27
3L VEISION At DULES. . . oottt et ettt e e e e e e e e e e e e e 28
3.9 Naturalid attribULes e 28
3.10. BasiC attribULES. ..ottt e e e 29
T8 I Y TW T4 =T = =T Y] o =T3P 31
I J0 I O 41V 1 32
3.13. ComMPOSItIONAl DaSiC by PES. . v vttt ettt e e e e e e e e e 33
3.14. Date and time types, and tiME ZONESttt e ettt et e e e e e e e 34
3.15. Embeddable ODJECtSo e e e 35
I J01 S XY Yol - [o - PP 36
0 R =T 0V R = 37
3.18. 0NE-10-0NE (FIrSt WY) . . o ettt ettt e et e e e e e e e e e e e 39
3.19. ONE-10-0NE (SECONT WAY) .+ ottt ettt ettt et ettt et et et e et et et et e et e et e e e et et et e et et e e 40
3020, MANY-T0-MANY. . .ottt et e e e e e e 40
3.21. Collections of basic values and embeddable 0bJECESttt 41
3.22. Collections Mapped tO SQL @ITays. ettt ettt et et ettt e e et e e e e e e e e e 42
3.23. Collections mapped to a separate table.o e 43
3.24. SUMMAry Of @NNOTAtIONS . . .ottt ettt e e e e e e e e 43
3.25.equals() @Nd hashCode () . .. v vttt ettt ettt ettt ettt e e et e e e e e e e e e e 45
4. OB eCt/relational MaPPINE . . .ottt e e e e e e e e 47
4.1. Mapping entity inheritance hierarchies i e e 47
4.2, MapPINgG to tables. . . .ot e e e e 49
4.3. Mapping entities t0 Tableso e 49
4.4. Mapping assoCiations to tables. e 50
4.5, MappPiNG to COIUMNS . ..ottt ettt et et e e e e e e e e e e e e e e 51
4.6. Mapping basic attributes t0 COIUMNS ettt et e e e e e 52
4.7. Mapping associations to foreign Key COUMNSttt e e 53

4.8. Mapping primary key joins between tablest e 55

4.9. Column lengths and adaptive COlUMN Ly PESttt e e e e e et e e e 55

400, LOBS .ottt e e e e e 56
4.11. Mapping embeddable types to UDTS Orto JSONottt e e e e e et e e et e e e e 57
4.12. Summary of SQL COlUMN By P MaPPINES. . .« vttt ettt ettt et e et e e e et e e e et e et e e 58
G T =T o o] Yo € 5 e o T - 3 59
o DT Y=Y e T3 1 Y/ 59
415, ADAING CONSEIAINTS. « o .ttt ettt e e et ettt e et e e e e e e e e e e e e e e e e 61
5. Interacting with the databaseo e et e i 63
5. L. PerSIStENCE CONTEXES . ..ttt ettt ettt e e e e e e e e 63
5.2, Creating @ SESSION ..ottt ettt et e e e e e e e 64
5.3, Managing tranSaCtioNsS . . oot e 65
5.4. Operations 0N the PersisteNCe CONTEXT.ttt ettt et et et e e e et et et et e et ettt 66
5.5. Cascading PersiStenCe OPEIratiONSottt ettt et et et e e e e e e e 68
5.6. Proxies and lazy fetChingo e e 68
5.7. Entity graphs and eager fetChingo e 69
5.8. Controlling loOKUP DY id . ..o o e e et e e e 70
5.9. Controlling state retrieval dUriNg Merge ettt e et e et 71
5.10. FLUShING the SESSION . ..ottt e e ettt e e e e e e e e e 71
5.11. Lifecycle callbacks and entity LISTENEIS.t e ettt e e e e e 73
5.12. Transient VS detachied.t e e e e 74
5.13. Interacting directly With JDBCttt e e et e e e e e e T4
5.14. What to do When things O WIONEottt ettt e e e e e et e et e et et e e e 75
6. EXECULING QUEIIES . .ottt ettt e e ettt e et e e e e e et e e e e e e e e 76
6. L HO L QUEIIES . o o ettt ettt e 76
6.2. QUENY PAramMELEIS . ..ttt ittt ettt et e e e e e e e e e 7
6.3, AUTO-TlUSI. L 7
{3 O (=T = Yo LU =T 4 =T PP 78
6.5. Amore comfortable way to Write Criteria QUENIES ittt e e e et e et e 79
6.6. NaTIVE SQ L QUOIIES. . . ettt ettt ettt ettt ettt e e ettt et e e e e e e e e e 80
6.7. ReSTrCiONS @Nd OFderiNg. . .o\ e ettt e ettt e e e e e e e e e e 81
6.8, AU M N AT ON et 82
6.9. LIMits and Pagination . ..o .ottt e e e e e e e 82
6.10. Key-based Paginationottt et e e e e e e e e 83
6.11. Representing Projection liStSttt e et e e e 84
L2072 - Y2 =T o U =T 1< PP 85
7. ComMPIlE-tiME t00lING. . .ot 87
Tl The static metamodel e e e e 87
7.2. Finder methods, query methods, and repOSItOrIEsttt e e ettt e 89
7.3. Named queries and HiDernate PrOCESSOttt ettt et ettt et e ettt et e et e e 90
T.4. Generated QUErY MEthOdSottt e et ettt e et e e e e e e e 90
7.5. Generating query methods asinstance Methods. it e e e 91
7.6.Generated finder Methods.o et e 93
7.7. Paging, ordering, and reStriCtioNsttt e e e e e e 95
7.8. Key-Dased Paginationottt 95
7.9. Query and finder Method retUIN tYPESottt ettt et et et et e e e e e e et e e 96
7.10. AN alternative AP PIOaCK . . . ettt et e e e e e e e e 97
8. TUNING AN PEIOIMANCE. . ..ttt ettt et et e et e e e e e e e et e et e e e e e 98
8.1. TUNING the CONNECLION POOL. . . o .ottt e ettt e e e e et e e e e e e e e e e e eeas 98
8.2, JDB BTN SIZE . . e ettt et e e e e e 99
8.3. Enabling statement batChingo e e 99
8.4, ASSOCIAtiON fEtCNINg . .ottt e e e 100
8.5. Batch fetching and subselect fetChingo e e e e 100
8.6 JOIN B NI . ot e 102
8.7.The seCoNd-leVEL CAChEttt e e e e e e e 103
8.8. Specifying which datais CaChed.o e e e e e e e e e e 103
8.9. Caching by Naturalidt et e e e 105
8.10. Caching and association fetChing e e e e e e e e 105
8.11. Configuring the second-level cache Provider e e e e 106
8.12. Caching qQUEIY reSULL SEES. . . .ottt et e e e e e e e 107
8.13. Second-level Cache ManagemMENtttt et e e e e e e e e 107

8.14. SeSSION CAChe MANAZEMENTttt ettt et et e et e e e e e e e e e 109

8.15. StAtElESS SES S ONS ottt e e e 110

8.16. Optimistic and pessimistic LOCKINGottt e e e et e e e e 111
8.17. ColleCting STatistiCS . . o .ottt e ettt e e e e e e e e e e e e e 112
8.18. Using Java Flight RECOIArottt e e et e e e e e et e e e e e e e e 112
8.19. Tracking dOWN SLOW QUETIESo ettt ettt et e e et e e e e e e e et e e e et e e e 112
8.20. AAING INAEXES . . .t ettt ettt et ettt e et e e e e e e e e e e e e e 113
8.21. Dealing with denormalized datat e e 113
8.22. Reactive programming with HIDernatet e e e e e 113
Lo TR Y 1V o Tt I I o ok PP 115
0. R OIS e 115
0.2, SO el . ottt e e e 117
0.3, MU ENANCY ottt ettt ettt et et e et e e e e e e e e e e e e e e e e 118
0.4, REAA-ONIY MBS . . vttt ettt ettt e et e e e e e e e e e e e e 119
9.5. USING CUSTOM-WHEEEN SQL. . ..ottt ettt ettt et e e e e e e e e e e e e e 120
9.6. Handling database-generated COlUMNSt e e e et e e e 121
9.7. User-defined ENEratorsttt ettt e e e e e e e e e e 121
0.8 NAMING SEratO IS . . oottt e e et e 123
9.0, SPAtIAl Aty DS . . o vttt ettt e e e e e e e e e e 123
9.10. Ordered and sorted collections and Map KEYS v .ttt e et et et e e e 125
LT 0 4 =T g =5 PP 126
9.12. Selective column lists in inserts and UPdates.ttt e et et e et e e e 127
9.13. Using the bytecode @NNanCer. e ettt e e e 128
9.14. Named fetCh Profiles.o e 129

0 TR0 =T 3P 132

Preface

Hibernate 6 was a major redesign of the world’s most popular and feature-rich ORM solution. The redesign touched almost every subsystem
of Hibernate, including the APIs, mapping annotations, and the query language. This new Hibernate was suddenly more powerful, more
robust, more portable, and more type safe.

Hibernate 7 builds on this foundation, adds support for JPA 3.2, and introduces Hibernate Data Repositories, an implementation of the
Jakarta Data specification. Taken together, these enhancements yield a level of compile-time type safety—and resulting developer
productivity—which was previously impossible. Hibernate Data Repositories offers truly seamless integration of the ORM solution with the
persistence layer, obsoleting older add-on repository frameworks.

Hibernate ORM and Hibernate Reactive are core components of Quarkus 3, the most exciting new environment for cloud-native
development in Java, and Hibernate remains the persistence solution of choice for almost every major Java framework or server.

Unfortunately, the changes in Hibernate 6 also obsoleted much of the information about Hibernate that’s available in books, in blog posts,
and on stackoverflow.

This guide is an up-to-date, high-level discussion of the current feature set and recommended usage. It does not attempt to cover every
feature and should be used in conjunction with other documentation:

« Hibernate’s extensive Javadoc,

+ the Guide to Hibernate Query Language,

« Introducing Hibernate Data Repositories, and
+ the Hibernate User Guide.

cover, readability is difficult to achieve, and so it’s most useful as a reference. Where necessary, we’ll provide links to

o The Hibernate User Guide includes detailed discussions of most aspects of Hibernate. But with so much information to
relevant sections of the User Guide.

https://jakarta.ee/specifications/persistence/3.2/jakarta-persistence-spec-3.2
https://hibernate.org/repositories/
https://jakarta.ee/specifications/data/1.0/jakarta-data-1.0
https://hibernate.org/reactive/
https://quarkus.io
https://docs.hibernate.org/orm/8.0/javadocs/
https://docs.hibernate.org/orm/8.0/querylanguage/html_single/
https://docs.hibernate.org/orm/8.0/repositories/html_single/
https://docs.hibernate.org/orm/8.0/userguide/html_single/

Chapter 1. Introduction

Hibernate is usually described as a library that makes it easy to map Java classes to relational database tables. But this formulation does no
justice to the central role played by the relational data itself. So a better description might be:

Hibernate makes relational data visible to a program written in Java, in a natural and typesafe form,

1. making it easy to write complex queries and work with their results,

2. letting the program easily synchronize changes made in memory with the database, respecting the ACID properties of
transactions, and

3. allowing performance optimizations to be made after the basic persistence logic has already been written.

Here the relational data is the focus, along with the importance of type safety. The goal of object/relational mapping (ORM) is to eliminate
fragile and untypesafe code, and make large programs easier to maintain in the long run.

ORM takes the pain out of persistence by relieving the developer of the need to hand-write tedious, repetitive, and fragile code for flattening
graphs of objects to database tables and rebuilding graphs of objects from flat SQL query result sets. Even better, ORM makes it much
easier to tune performance later, after the basic persistence logic has already been written.

Actually, the problem that object/relational mapping solves has been mischaracterized for decades, and has very little to do with any so-
called "mismatch" between classes and tables. The real problem is:

1. Datais stored in normalized tables.
2. The process of efficiently reading data from tables denormalizes the data with joins.
3. In an object-oriented program, we often want to work with data in something quite close to its original normalized form.

Therefore, the principal task of object/relational mapping is to renormalize the data after reading it from the database. This need exists even
if the classes in our program are identical to the database tables.

A perennial question is: should | use ORM, or plain SQL? The answer is usually: use both. JPA and Hibernate were designed
to work in conjunction with handwritten SQL. You see, most programs with nontrivial data access logic will benefit from
the use of ORM at least somewhere. But if Hibernate is making things more difficult, for some particularly tricky piece of
data access logic, the only sensible thing to do is to use something better suited to the problem! Just because you’re
using Hibernate for persistence doesn’t mean you have to use it for everything.

Let’s underline the important point here: the goal of ORM is not to hide SQL or the relational model. After all, Hibernate’s query language is
nothing more than an object-oriented dialect of ANSI SQL.

Is Hibernate a "leaky abstraction"?

Hibernate—and ORM in general—has been accused of being a leaky abstraction, that is, of failing to completely hide the underlying
relational database. Is this true? Well, as you can guess from what we’ve already said, the short answer is: yes, and that’s a good
thing. Of course, whether you consider an abstraction "leaky" depends on what you think it’s trying to abstract. Hibernate
successfully abstracts many things: variations between dialects of SQL, messy interactions with JDBC, SQL object naming
conventions, and so on. But it doesn’t even attempt to pretend there’s anything other than a relational data model underlying all
this. The simple reason is performance. It’s just not possible to achieve acceptable performance in data access without
acknowledging the nature of the underlying persistent representation. We’re old enough to have seen multiple generations of
developer relearn this lesson by experience.

Developers often ask about the relationship between Hibernate and JPA, so let’s take a short detour into some history.

1.1. Hibernate and JPA

Hibernate was the inspiration behind the Java (now Jakarta) Persistence API, or JPA, and includes a complete implementation of the latest
revision of this specification.

The early history of Hibernate and JPA

The Hibernate project began in 2001, when Gavin King’s frustration with Entity Beans in EJB 2 boiled over. It quickly overtook other
open source and commercial contenders to become the most popular persistence solution for Java, and the book Hibernate in
Action, written with Christian Bauer, was an influential bestseller.

https://docs.hibernate.org/orm/8.0/querylanguage/html_single/
https://jakarta.ee/specifications/persistence/3.2/jakarta-persistence-spec-3.2

In 2004, Gavin and Christian joined a tiny startup called JBoss, and other early Hibernate contributors soon followed: Max Rydahl
Andersen, Emmanuel Bernard, Steve Ebersole, and Sanne Grinovero.

Soon after, Gavin joined the EJB 3 expert group and convinced the group to deprecate Entity Beans in favor of a brand-new
persistence API modelled after Hibernate. Later, members of the TopLink team got involved, and the Java Persistence API evolved as
a collaboration between—primarily—Sun, JBoss, Oracle, and Sybase, under the leadership of Linda Demichiel.

Over the intervening two decades, many talented people have contributed to the development of Hibernate. We’re all especially
grateful to Steve, who has led the project for many years, since Gavin stepped back to focus in other work.

We can think of the API of Hibernate in terms of three basic elements:

« an implementation of the JPA-defined APIs, most importantly, of the interfaces EntityManagerFactory and EntityManager, and of the
JPA-defined O/R mapping annotations,

* a native APl exposing the full set of available functionality, centered around the interfaces SessionFactory, which extends
EntityManagerFactory, and Session, which extends EntityManager, and

+ a set of mapping annotations which augment the O/R mapping annotations defined by JPA, and which may be used with the JPA-
defined interfaces, or with the native API.

Hibernate also offers a range of SPIs for frameworks and libraries which extend or integrate with Hibernate, but we’re not interested in any
of that stuff here.

Data wodel
Entity classes)

Persistence-related

program IOgic Uses

Your progrom
Calls annctated Lt/
¢ h g Ry
JPA API
EntityManager JPA annctations f
Py ;
W extends —> | augment

Uses
H.Lemo:t.e_ API Hibernate
L Session annctations

/ Hibernate ORM _ W,

As an application developer, you must decide whether to:

¢ write your program in terms of Session and SessionFactory, or

« maximize portability to other implementations of JPA by, wherever reasonable, writing code in terms of EntityManager and
EntityManagerFactory, falling back to the native APIs only where necessary.

Whichever path you take, you will use the JPA-defined mapping annotations most of the time, and the Hibernate-defined annotations for
more advanced mapping problems.

You might wonder if it’s possible to develop an application using only JPA-defined APIs, and, indeed, that’s possible in

principle. JPAis a great baseline that really nails the basics of the object/relational mapping problem. But without the
native APIs, and extended mapping annotations, you miss out on much of the power of Hibernate.

Since Hibernate existed before JPA, and since JPA was modelled on Hibernate, we unfortunately have some competition and duplication in

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/SessionFactory.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/Session.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/package-summary.html

naming between the standard and native APIs. For example:

Table 1.1: Examples of competing APIs with similar naming

Hibernate JPA
org.hibernate.annotations.CascadeType javax.persistence.CascadeType
org.hibernate.FlushMode javax.persistence.FlushModeType
org.hibernate.annotations.FetchMode javax.persistence.FetchType
org.hibernate.query.Query javax.persistence.Query
org.hibernate.Cache javax.persistence.Cache
@org.hibernate.annotations.NamedQuery @javax.persistence.NamedQuery
@org.hibernate.annotations.Cache @javax.persistence.Cacheable
org.hibernate.relational.SchemaManager jakarta.persistence.SchemaManager

Typically, the Hibernate-native APIs offer something a little extra that’s missing in JPA, so this isn’t exactly a flaw. But it’s something to
watch out for.

1.2. Writing Java code with Hibernate

If you’re completely new to Hibernate and JPA, you might already be wondering how the persistence-related code is structured.
Well, typically, our persistence-related code comes in two layers:

1. arepresentation of our data model in Java, which takes the form of a set of annotated entity classes, and

2. alarger number of functions which interact with Hibernate’s APIs to perform the persistence operations associated with our various
transactions.

The first part, the data or "domain" model, is usually easier to write, but doing a great and very clean job of it will strongly affect your
success in the second part.

Most people implement the domain model as a set of what we used to call "Plain Old Java Objects", that is, as simple Java classes with no
direct dependencies on technical infrastructure, nor on application logic which deals with request processing, transaction management,
communications, or interaction with the database.

Take your time with this code, and try to produce a Java model that’s as close as reasonable to the relational data model.
Avoid using exotic or advanced mapping features when they’re not really needed. When in the slightest doubt, map a
foreign key relationship using @anyToOne with @OneToMany (mappedBy=...) in preference to more complicated association
mappings.

The second part of the code is much trickier to get right. This code must:

+ manage transactions and sessions,

« interact with the database via the Hibernate session,
» publish CDI events and send JMS messages,

« fetch and prepare data needed by the Ul, and

« handle failures.

Responsibility for transaction and session management, and for recovery from certain kinds of failure, is best handled in
some sort of framework code.

We’re going to come back soon to the thorny question of how this persistence logic should be organized, and how it should fit into the rest
of the system.

1.3. Hello, Hibernate

Before we get deeper into the weeds, we’ll quickly present a basic example program that will help you get started if you don’t already have
Hibernate integrated into your project.

We begin with a simple Gradle build file:

build.gradle

plugins {
id 'java'
¥
group = 'org.example'

version = '1.0-SNAPSHOT'
repositories {

mavenCentral()

dependencies {
// the GOAT ORM
implementation 'org.hibernate.orm:hibernate-core:8.0.0.Alphal'

// Hibernate Processor

annotationProcessor 'org.hibernate.orm:hibernate-processor:8.0.0.Alphal'’

// Hibernate Validator

implementation 'org.hibernate.validator:hibernate-validator:9.0.1.Final’

implementation 'org.glassfish.expressly:expressly:6.0.0'

// Agroal connection pool
runtimeOnly 'org.hibernate.orm:hibernate-agroal:8.0.0.Alphal’

// logging via Log4j
runtimeOnly 'org.apache.logging.log4j:log4j-core:2.24.3"'

// H2 database
runtimeOnly 'com.h2database:h2:2.3.232'

Only the first of these dependencies is absolutely required to run Hibernate.
Next, we’ll add a logging configuration file for log4;:
log4j2.properties

rootLogger.level = info
rootLogger.appenderRefs = console
rootLogger.appenderRef.console.ref = console

SQL statements (set level=debug to enable)
logger.hibernate.name = org.hibernate.SQL
logger.hibernate.level = info

JDBC parameter binding (set level=trace to enable)
logger. jdbc-bind.name=org.hibernate.orm. jdbc.bind
logger.jdbc-bind.level=info

JDBC result set extraction (set level=trace to enable)
logger.jdbc-extract.name=org.hibernate.orm. jdbc.extract
logger.jdbc-extract.level=info

JDBC batching (set level=trace to enable)
logger.batch.name=org.hibernate.orm. jdbc.batch
logger.batch.level=info

direct log output to the console
appender.console.name = console

appender.console.type = Console
appender.console.layout.type = PatternLayout
appender.console. layout.pattern = %highlight{[%p1} %m%n

Now we need some Java code. We begin with our entity class:
Book. java

package org.hibernate.example;

https://gradle.org
https://logging.apache.org/log4j/

import jakarta.persistence.Entity;
import jakarta.persistence.Id;
import jakarta.validation.constraints.NotNull;

@Entity

class Book {
@Id
String isbn;

@NotNull
String title;

Book() {3

Book(String isbn, String title) {
this.isbn = isbn;
this.title = title;

Finally, let’s see code which configures and instantiates Hibernate and asks it to persist and query the entity. Don’t worry if this makes no
sense at all right now. It’s the job of the rest of this Short Guide to make all this crystal clear.

Main. java

package org.hibernate.example;
import org.hibernate. jpa.HibernatePersistenceConfiguration;
import static java.lang.System.out;

public class Main {
public static void main(String[] args) {
var sessionFactory =
new HibernatePersistenceConfiguration("Bookshelf")
.managedClass(Book.class)
// use H2 in-memory database
.jdbcUr1("jdbc:h2:mem:db1")

.jdbcCredentials("sa", "")
// set the Agroal connection pool size
. jdbcPoolSize(16)

// display SQL in console
.showSql(true, true, true)
.createEntityManagerFactory();

// export the inferred database schema
sessionFactory.getSchemaManager().create(true);

// persist an entity
sessionFactory.inTransaction(session -> {

session.persist(new Book("9781932394153", "Hibernate in Action"));
1;

// query data using HQL
sessionFactory.inSession(session -> {
out.println(session.createSelectionQuery("select isbn||': '||title from Book").getSingleResult());

»;

// query data using criteria API

sessionFactory.inSession(session -> {
var builder = sessionFactory.getCriteriaBuilder();
var query = builder.createQuery(String.class);
var book = query.from(Book.class);
query.select(builder.concat(builder.concat(book.get(Book_.isbn), builder.literal(": ")),

book.get(Book_.title)));

out.println(session.createSelectionQuery(query).getSingleResult());

»;

In practice, we never access the database directly from a main() method. So now let’s talk about how to organize persistence logic in a real
system. The rest of this chapter is not compulsory. If you’re itching for more details about Hibernate itself, you’re quite welcome to skip
straight to the next chapter, and come back later.

1.4. Entities

A class in the domain model which directly represents a relational database table is called an entity. Entity classes are central to object
persistence and to object/relational mapping. They’re also, typically, central players in the business logic of our application program.
Entities represent the things in our business domain. This makes them very important objects indeed!

Given how much weight an entity already bears due to its very nature, we need to think carefully before weighing it down with too many
additional responsibilities.

What sort of logic belongs in an entity?

There exists an extensive online literature which posits that there are rich domain models, where entities have methods
implementing interesting business logic, and anemic domain models, where the entities are pure data holders, and that a developer
should hold an opinion that one or the other of these sorts of domain model is "better".

We do not hold any such opinion, and if you ask us for one, we will most likely suddenly discover somewhere else we need to be.

A more interesting question is not how much logic belongs in the entity class, but what sort of logic belongs there. We think the
answer is that an entity should never implement technical concerns, and should never obtain references to framework objects. Nor
should it hold extra mutable state which is not very directly related to its role in representing persistent state. For example:

+ an entity may compute totals and averages, even caching them if necessary, enforce its invariants, interact with and construct
other entities, and so on, and its annotations express how it maps to database tables,

* but the entity should not call the EntityManager or a Jakarta Data repository, build a criteria query, send a JMS message, start a
transaction, publish events to the CDI event bus, maintain a stateful queue of events to be published later, or anything of a similar
nature.

One way to summarize this is:

Entities do business logic; but they don’t do orchestration.

Later, we’ll discuss various ways to manage transactions, send event notifications, and query the database. Such code will always be
external to the entity itself.

In keeping with our commitment to anti-dogmatism, we would like to add the following important caveat to the discussion in the previous
callout.

Active Record

The discussion above expresses our "traditional" approach—which lay behind the design of Hibernate, of JPA, and of Jakarta Data—
where entity classes are plain Java objects without dependence on framework code. An alternative approach is the Active Record
pattern, as exemplified by Panache. In Active Record, entity types inherit framework objects, and persistence operations are located
directly on the entities. You can think of this as merging the roles of entity and DAO/Repository into a single object.

Active Record comes with both upsides and downsides, but we don’t mean to exclude it from consideration. We must therefore
slightly modify the prescription we’ve given above: in an Active Record, it’s obviously OK to access the EntityManager and perform
other persistence-related operations, and we therefore expect our Active Record class to look somewhat more "technical" than a trad
entity.

But the basic principle remains intact: an entity does not do orchestration, it does not manage transactions, it does not obtain
references to other sorts of framework object, and it does not hold mutable state unrelated to its persistent state.

For now, we’re going to assume that entities are implemented as plain Java classes.

1.5. Stateful and stateless sessions

It should be very clear from the example code above, that the session is also a very important object. It exposes basic operations like
persist() and createQuery(), and so it’s our first port of call when we want to interact with the database via Hibernate. In the code we just

https://quarkus.io/guides/hibernate-orm-panache

saw, we've used a stateful session.

Later, we’ll learn about the idea of a persistence context. Oversimplifying for now, you can think of it as a cache of data which has been read
in the current transaction. Thus, in the architecture of Hibernate, it’s sometimes called the first-level cache. Each stateful session —that is,
every Hibernate Session, and every JPA EntityManager —has its own persistence context.

But stateful sessions have never been the only possibility. The StatelessSession interface offers a way to interact with Hibernate without
going through a persistence context. However, the programming model is somewhat different.

Stateless sessions

Among our biggest regrets is that we didn’t give enough love to StatelessSession twenty years ago. Sure, a stateful session is in
some sense more powerful, or at least more magical. But with that magic comes a loss of direct control over persistence operations,
and some traps for inexperienced users. A significant minority of developers find working with a persistence context frustrating, and
they would surely be better served by a stateless session.

» We used to view StatelessSession as an API directed toward very specific usage patterns, in particular, batch processing of large
numbers of entities. As a result, we left out certain functionality —for example, use of the second-level cache —which didn’t seem
relevant to those use cases. This left StatelessSession lacking feature parity with Session, and it was a mistake. In Hibernate 7,
we’ve fixed this mistake. A StatelessSession now offers essentially all the functionality of Hibernate except, naturally, the first-
level cache.

« Compounding our error, we left StatelessSession out of JPA. This meant that a large number of Hibernate users didn’t even
realize this option existed. We promise to make sure there are stateless sessions in Jakarta Persistence 4.

So, finally, let us state for the record: we messed up here. Hibernate is all about object/relational mapping; persistence contexts are
something extra on top. You don’t have to use stateful sessions, and you’re not doing anything wrong if you decide to use stateless
sessions instead.

As of Hibernate 7, a key decision for any new project is which of these programming models to take as a baseline. Fortunately, the two
models aren’t mutually exclusive. This is a friendly competition, where the two APIs are designed to complement each other. Even if we
decide to use stateful Sessions most of the time, we can still use a StatelessSession wherever it’s more convenient.

On the other hand, if you decide to adopt Jakarta Data, the decision is made for you: repositories in Jakarta Data 1.0 are
always stateless, and in Hibernate Data Repositories a repository is backed by a StatelessSession.

But now we’ve got just a little bit ahead of ourselves. In the next section taking we’re taking a journey which might—but definitely doesn’t
necessarily—end at the idea of a "repository".

1.6. Organizing persistence logic

In a real program, persistence logic like the code shown above is usually interleaved with other sorts of code, including logic:

« implementing the rules of the business domain, or
« forinteracting with the user.

Therefore, many developers quickly—even too quickly, in our opinion—reach for ways to isolate the persistence logic into some sort of
separate architectural layer. We’re going to ask you to suppress this urge for now.

We prefer a bottom-up approach to organizing our code. We like to start thinking about methods and functions, not about architectural
layers and container-managed objects.

Rethinking the persistence layer

When we wrote An Introduction to Hibernate 6, the predecessor of this document, we broke with a long practice of remaining agnostic
in debates over application architecture. Into the vacuum created by our agnosticism had poured a deluge of advice which tended to
encourage over-engineering and violation of the First Commandment of software engineering: Don’t Repeat Yourself. We felt
compelled to speak up for a more elementary approach.

Here, we reiterate our preference for design which emerges organically from the code itself, via a process of refactoring and iterative
abstraction. The Extract Method refactoring is a far, far more powerful tool than drawing boxes and arrows on whiteboards.

In particular, we hereby give you permission to write code which mixes business logic with persistence logic within the same
architectural layer. Every architectural layer comes with a high cost in boilerplate, and in many contexts a separate persistence layer
is simply unnecessary. Both of the following architectures represent allowed points within the design space:

https://hibernate.org/repositories/

Applico:tion Logic

f L % ‘l/ ‘u/ N \ ; Apphcmtion Logic
[Persistence Layer)% E ntities

Larf,e P2 S N —— e NG 5 Ay (|

surface! R\ T : . :
; : [‘I" mnsac‘tions) [TPA / Hibernate

TPA / Hbernate

Eﬁﬁths

’ : Simplified
¢ tional ' plified
A:::i’i:e':::e : . Architecture Dotabase
(2001 : Database i @023y

In the case that a separate persistence layer is helpful, we encourage you to consider the use of Jakarta Data repositories, in
preference to older approaches.

Toillustrate the sort of approach to code organization that we advocate, let’s consider a service which queries the database using HQL or
SQL. We might start with something like this, a mix of Ul and persistence logic:

@Path("/")
@Produces("application/json")
public class BookResource {

private final SessionFactory sessionfactory = ;

@GET

@Path("book/{isbn}")

public Book getBook(String isbn) {
var book = sessionFactory.fromTransaction(session -> session.find(Book.class, isbn));
return book == null ? Response.status(404).build() : book;

Indeed, we might also finish with something like that—it’s quite hard to identify anything concretely wrong with the code above, and for
such a simple case it seems really difficult to justify making this code more complicated by introducing additional objects.

One very nice aspect of this code, which we wish to draw your attention to, is that session and transaction management is handled by
generic "framework" code, just as we already recommended above. In this case, we’re using the fromTransaction() method, which
happens to come built in to Hibernate. But you might prefer to use something else, for example:

« in a container environment like Jakarta EE or Quarkus, container-managed transactions and container-managed persistence contexts, or
+ something you write yourself.

The important thing is that calls like createEntityManager() and getTransaction().begin() don’t belongin regular program logic, because
it’s tricky and tedious to get the error handling correct.

Let’s now consider a slightly more complicated case.

@Path("/")
@Produces("application/json")
public class BookResource {
private static final int RESULTS_PER_PAGE = 20;

private final SessionFactory sessionfactory = ;

@GET
@Path("books/{titlePattern}/{pageNumber:\\d+}")
public List<Book> findBooks(String titlePattern, int pageNumber) {
var page = Page.page(RESULTS_PER_PAGE, pageNumber);
var books =
sessionFactory.fromTransaction(session -> {
var findBooksByTitle = "from Book where title like ?1 order by title";
return session.createSelectionQuery(findBooksByTitle, Book.class)
.setParameter(1, titlePattern)

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/SessionFactory.html#fromTransaction(java.util.function.Function)

.setPage(page)
.getResultList();
s
return books.isEmpty() ? Response.status(404).build() : books;

This is fine, and we won’t complain if you prefer to leave the code exactly as it appears above. But there’s one thing we could perhaps
improve. We love super-short methods with single responsibilities, and there looks to be an opportunity to introduce one here. Let’s hit the
code with our favorite thing, the Extract Method refactoring. We obtain:

static List<Book> findBooksTitled(Session session, String titlePattern, Page page) {
var findBooksByTitle = "from Book where title like ?1 order by title";
return session.createSelectionQuery(findBooksByTitle, Book.class)
.setParameter(1, titlePattern)
.setPage(page)
.getResultList();

This is an example of a query method, a function which accepts arguments to the parameters of a HQL or SQL query, and executes the
query, returning its results to the caller. And that’s all it does; it doesn’t orchestrate additional program logic, and it doesn’t perform
transaction or session management.

It’s even better to specify the query string using the @NamedQuery annotation, so that Hibernate can validate the query at startup time, that
is, when the SessionFactory is created, instead of when the query is first executed. Indeed, since we included Hibernate Processor in our
Gradle build, the query can even be validated at compile time.

We need a place to put the annotation, so let’s move our query method to a new class:

@CheckHQL // validate named queries at compile time
@NamedQuery(name = "findBooksByTitle",

query = "from Book where title like :title order by title")
class Queries {

static List<Book> findBooksTitled(Session session, String titlePattern, Page page) {
return session.createQuery(Queries_._findBooksByTitle_) //type safe reference to the named query
.setParameter("title", titlePattern)
.setPage(page)
.getResultList();

Notice that our query method doesn’t attempt to hide the EntityManager from its clients. Indeed, the client code is responsible for
providing the EntityManager or Session to the query method.

The client code may:

* obtain an EntityManager or Session by calling inTransaction() or fromTransaction(), as we saw above, or,
« in an environment with container-managed transactions, it might obtain it via dependency injection.

Whatever the case, the code which orchestrates a unit of work usually just calls the Session or EntityManager directly, passing it along to
helper methods like our query method if necessary.

@GET
@Path("books/{titlePattern}/{pageNumber:\\d+}")
public List<Book> findBooks(String titlePattern, int pageNumber) {
var page = Page.page(RESULTS_PER_PAGE, pageNumber);
var books =
sessionFactory.fromTransaction(session ->
// call handwritten query method
Queries.findBooksTitled(session, titlePattern, page));
return books.isEmpty() ? Response.status(404).build() : books;

You might be thinking that our query method looks a bit boilerplatey. That’s true, perhaps, but we’re much more concerned that it’s still not
perfectly typesafe. Indeed, for many years, the lack of compile-time checking for HQL queries and code which binds arguments to query

10

parameters was our number one source of discomfort with Hibernate. Here, the @CheckHQL annotation takes care of checking the query
itself, but the call to setParameter() is still not type safe.

Fortunately, there’s now a great solution to both problems. Hibernate Processor is able to fill in the implementation of such query methods
for us. This facility is the topic of a whole chapter of this introduction, so for now we’ll just leave you with one simple example.

Suppose we simplify Queries to just the following:

// a sort of proto-repository, this interface is never implemented
interface Queries {
// a HQL query method with a generated static "implementation"
@HQL("where title like :title order by title")
List<Book> findBooksTitled(String title, Page page);

Then Hibernate Processor automatically produces an implementation of the method annotated @HQL in a class named Queries_. We can call
it just like we were previously calling our handwritten version:

@GET
@Path("books/{titlePattern}/{pageNumber:\\d+}")
public List<Book> findBooks(String titlePattern, int pageNumber) {
var page = Page.page(RESULTS_PER_PAGE, pageNumber);
var books =
sessionFactory.fromTransaction(session ->
// call the generated query method "implementation"
Queries_.findBooksTitled(session, titlePattern, page));
return books.isEmpty() ? Response.status(404).build() : books;

In this case, the quantity of code eliminated is pretty trivial. The real value is in improved type safety. We now find out about errors in
assignments of arguments to query parameters at compile time.

This is all quite nice so far, but at this point you’re probably wondering whether we could use dependency injection to obtain an instance of
the Queries interface, and have this object take care of obtaining its own Session. Well, indeed we can. What we need to do is indicate the
kind of session the Queries interface depends on, by adding a method to retrieve the session. Observe, again, that we’re still not attempting
to hide the Session from the client code.

// a true repository interface with generated implementation

interface Queries {
// declare the kind of session backing this repository
Session session();

// a HQL query method with a generated implementation
@HOL("where title like :title order by title")
List<Book> findBooksTitled(String title, Page page);

The Queries interface is now considered a repository, and we may use CDI to inject the repository implementation generated by Hibernate
Processor. Also, since | guess we’re now working in some sort of container environment, we’ll let the container manage transactions for us.

@Inject Queries queries; // inject the repository

@GET

@Path("books/{titlePattern}/{pageNumber:\\d+}")

@Transactional

public List<Book> findBooks(String titlePattern, int pageNumber) {
var page = Page.page(RESULTS_PER_PAGE, pageNumber);
var books = queries.findBooksTitled(session, titlePattern, page); // call the repository method
return books.isEmpty() ? Response.status(404).build() : books;

Alternatively, if CDI isn’t available, we may directly instantiate the generated repository implementation class using new
Queries_(entityManager).

The Jakarta Data specification now formalizes this approach using standard annotations, and our implementation of this
specification, Hibernate Data Repositories, is built into Hibernate Processor. You probably already have it available in
your program.

11

https://jakarta.ee/specifications/data/1.0/jakarta-data-1.0

Unlike other repository frameworks, Hibernate Data Repositories offers something that plain JPA simply doesn’t have:
full compile-time type safety for your queries. To learn more, please refer to Introducing Hibernate Data Repositories.

Why we changed our mind about repositories

At the time we wrote An Introduction to Hibernate 6, we were especially frustrated with the limitations of popular frameworks which
claimed to simplify the use of JPA by wrapping and hiding the EntityManager. In our considered opinion, such frameworks typically
made JPA harder to use, sometimes misleading users into misuse of the technology.

The birth of the Jakarta Data specification has obsoleted our arguments against repositories, along with the older frameworks which
were the source of our frustration. Jakarta Data—as realized by Hibernate Data Repositories—offers a clean but very flexible way to
organize code, along with much better compile-time type safety, without getting in the way of direct use of the StatelessSession.

Now that we have a rough picture of what our persistence logic might look like, it’s natural to ask how we should test our code.

1.7. Testing persistence logic

When we write tests for our persistence logic, we’re going to need:

1. a database, with
2. aninstance of the schema mapped by our persistent entities, and
3. aset of test data, in a well-defined state at the beginning of each test.

It might seem obvious that we should test against the same database system that we’re going to use in production, and, indeed, we should
certainly have at least some tests for this configuration. But on the other hand, tests which perform 1/0 are much slower than tests which
don’t, and most databases can’t be set up to run in-process.

So, since most persistence logic written using Hibernate 6 is extremely portable between databases, it often makes good sense to test
against an in-memory Java database. (H2 is the one we recommend.)

We do need to be careful here if our persistence code uses native SQL, or if it uses concurrency-management features like
pessimistic locks.

Whether we’re testing against our real database, or against an in-memory Java database, we’ll need to export the schema at the beginning
of a test suite. We usually do this when we create the Hibernate SessionFactory or JPAEntityManagerFactory, and so traditionally we’ve
used a configuration property for this.

The JPA-standard property is jakarta.persistence.schema-generation.database.action. For example, if we’re using
PersistenceConfiguration to configure Hibernate, we could write:

configuration.property(PersistenceConfiguration.SCHEMAGEN_DATABASE_ACTION,
Action.SPEC_ACTION_DROP_AND_CREATE);

Alternatively, we may use the new SchemaManager API to export the schema, just as we did above. This option is especially convenient when
writing tests.

sessionFactory.getSchemaManager().create(true);

Since executing DDL statements is very slow on many databases, we don’t want to do this before every test. Instead, to ensure that each
test begins with the test data in a well-defined state, we need to do two things before each test:

1. clean up any mess left behind by the previous test, and then
2. reinitialize the test data.

We may truncate all the tables, leaving an empty database schema, using the SchemaManager-.
sessionFactory.getSchemaManager().truncate();
After truncating tables, we might need to initialize our test data. We may specify test data in a SQL script, for example:

Jimport.sql

insert into Books (isbn, title) values ('9781932394153', 'Hibernate in Action')
insert into Books (isbn, title) values ('9781932394887', 'Java Persistence with Hibernate')

12

https://docs.hibernate.org/orm/8.0/repositories/html_single/
http://www.h2database.com
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/relational/SchemaManager.html

insert into Books (isbn, title) values ('9781617290459', 'Java Persistence with Hibernate, Second Edition')

If we name this file import.sql, and place it in the root classpath, that’s all we need to do.

Otherwise, we need to specify the file in the configuration property jakarta.persistence.sql-load-script-source. If we’re using
PersistenceConfiguration to configure Hibernate, we could write:

configuration.property(AvailableSettings.JAKARTA_HBM2DDL _LOAD_SCRIPT_SOURCE,
"/org/example/test-data.sql");

The SQL script will be executed every time export() or truncate() is called.

There’s another sort of mess a test can leave behind: cached data in the second-level cache. We recommend disabling
Hibernate’s second-level cache for most sorts of testing. Alternatively, if the second-level cache is not disabled, then
before each test we should call:

sessionFactory.getCache().evictAllRegions();

Now, suppose you’ve followed our advice, and written your entities and query methods to minimize dependencies on "infrastructure", that
is, on libraries other than JPA and Hibernate, on frameworks, on container-managed objects, and even on bits of your own system which
are hard to instantiate from scratch. Then testing persistence logic is now straightforward!

You’ll need to:

* bootstrap Hibernate and create a SessionFactory or EntityManagerFactory at the beginning of your test suite (we’ve already seen how
to do that), and
* create a new Session or EntityManager inside each @Test method, using inTransaction(), for example.

Actually, some tests might require multiple sessions. But be careful not to leak a session between different tests.

Another important test we’ll need is one which validates our O/R mapping annotations against the actual database
schema. This is again the job of the schema management tooling, either:

configuration.property(PersistenceConfiguration.SCHEMAGEN_DATABASE_ACTION,
Action.ACTION_VALIDATE);

Or:

sessionFactory.getSchemaManager().validate();

This "test" is one which many people like to run even in production, when the system starts up.

1.8. Overview

It’s now time to begin our journey toward actually understanding the code we saw earlier.
This introduction will guide you through the basic tasks involved in developing a program that uses Hibernate for persistence:

1. configuring and bootstrapping Hibernate, and obtaining an instance of SessionFactory or EntityManagerFactory,

2. writing a domain model, that is, a set of entity classes which represent the persistent types in your program, and which map to tables of
your database,

3. customizing these mappings when the model maps to a pre-existing relational schema,

4. using the Session or EntityManager to perform operations which query the database and return entity instances, or which update the
data held in the database,

5. using Hibernate Processor to improve compile-time type-safety,

6. writing complex queries using the Hibernate Query Language (HQL) or native SQL, and, finally

7. tuning performance of the data access logic.

Naturally, we’ll start at the top of this list, with the least-interesting topic: configuration.

13

Chapter 2. Configuration and bootstrap

We would love to make this section short. Unfortunately, there are several distinct ways to configure and bootstrap Hibernate, and we’re
going to have to describe at least two of them in detail.

The five basic ways to obtain an instance of Hibernate are shown in the following table:

Using the standard JPA-defined XML, and the operation
Persistence.createEntityManagerFactory()

Using the standard JPA-defined PersistenceConfiguration class
Using HibernatePersistenceConfiguration or the older Configuration
class to construct a SessionFactory

Using the more complex APIs defined in org.hibernate.boot

By letting the container take care of the bootstrap process and of

Usually chosen when portability between JPA implementations is
important.

Usually chosen when portability between JPA implementations is
important, but programmatic control is desired.

When portability between JPA implementations is not important, this
option adds some convenience and saves a typecast.

Used primarily by framework integrators, this option is outside the
scope of this document.

Used in a container environment like WildFly or Quarkus.

injecting the SessionFactory or EntityManagerFactory

Here we’ll focus on the first two options.

Hibernate in containers

Actually, the last option is extremely popular, since every major Java application server and microservice framework comes with
built-in support for Hibernate. Such container environments typically also feature facilities to automatically manage the lifecycle of
an EntityManager or Session and its association with container-managed transactions.

To learn how to configure Hibernate in such a container environment, you’ll need to refer to the documentation of your chosen
container. For Quarkus, here’s the relevant documentation.

If you’re using Hibernate outside of a container environment, you’ll need to:

« include Hibernate ORM itself, along with the appropriate JDBC driver, as dependencies of your project, and
» configure Hibernate with information about your database, by specifying configuration properties.

2.1. Including Hibernate in your project build
First, add the following dependency to your project:

org.hibernate.orm:hibernate-core:{version}

Where {version} is the version of Hibernate you’re using, 8.0.0.Alphat, for example.
You’ll also need to add a dependency for the JDBC driver for your database.

Table 2.2: JDBC driver dependencies

Database Driver dependency

PostgreSQL or CockroachDB org.postgresql:postgresql:{version}

MySQL or TiDB com.mysql:mysql-connector-j:{version}

MariaDB org.mariadb. jdbc:mariadb-java-client:{version}
DB2 com.ibm.db2:jcc:{version}

SQL Server com.microsoft.sqlserver:mssql-jdbc:{version}
Oracle com.oracle.database. jdbc:ojdbc17:{version}

14

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/jpa/HibernatePersistenceConfiguration.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/Configuration.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/boot/package-summary.html
https://quarkus.io/guides/hibernate-orm

Database
H2
HSQLDB

MongoDB

Google Spanner

Driver dependency
com.h2database:h2:{version}
org.hsqldb:hsgldb:{version}

The JDBC driver is bundled with the dialect mentioned in Optional
dependencies

com. google.cloud: google-cloud-spanner-jdbc:{version}

Where {version} is the latest version of the JDBC driver for your database.

2.2. Optional dependencies

Optionally, you might also add any of the following additional features:

Table 2.3: Optional dependencies

Optional feature

An SLF4J logging implementation

A JDBC connection pool, for example, Agroal

The Hibernate Processor, especially if you’re using Jakarta Data or the
JPA criteria query API

The Query Validator, for compile-time checking of HQL

Hibernate Validator, an implementation of Bean Validation

Local second-level cache support via JCache and EHCache

Local second-level cache support via JCache and Caffeine

Distributed second-level cache support via Infinispan

A JSON serialization library for working with JSON datatypes, for
example, Jackson 2, {jackson3}[Jackson 3] or Yasson

Hibernate Spatial

Envers, for auditing historical data

Hibernate JFR, for monitoring via Java Flight Recorder
Hibernate Jandex integration, for entity discovery

Community dialects

Third-party dialects

Dependencies

org.apache.logging.log4j:log4j-core
ororg.slf4j:slf4j-jdk14

org.hibernate.orm:hibernate-agroal

org.hibernate.orm:hibernate-processor

org.hibernate:query-validator

org.hibernate.validator:hibernate-validator
and org.glassfish.expressly:expressly

org.hibernate.orm:hibernate-jcache
and org.ehcache:ehcache

org.hibernate.orm:hibernate-jcache
and com. github.ben-manes.caffeine: jcache

org.infinispan:infinispan-hibernate-cache-v60
com. fasterxml. jackson.core: jackson-databind,
tools. jackson.core: jackson-databind
ororg.eclipse:yasson
org.hibernate.orm:hibernate-spatial
org.hibernate.orm:hibernate-envers
org.hibernate.orm:hibernate-jfr
org.hibernate.orm:hibernate-scan-jandex
org.hibernate.orm:hibernate-community-dialects

MongoDB: org.mongodb:mongodb-hibernate:{version}

Google Spanner: com. google. cloud: google-cloud-spanner-
hibernate-dialect:{version}

Where {version} is the version of the third-party dialect compatible
with the version of Hibernate ORM you are using. See the dialect’s own
documentation for more information. The compatibility matrix on the
Hibernate website may also be of help.

15

http://www.slf4j.org/
https://agroal.github.io
https://hibernate.org/orm/tooling/
https://github.com/hibernate/query-validator/
https://hibernate.org/validator
https://beanvalidation.org
https://www.ehcache.org
https://github.com/ben-manes/caffeine/
https://infinispan.org
https://github.com/FasterXML/jackson
https://projects.eclipse.org/projects/ee4j.yasson
https://docs.hibernate.org/orm/8.0/dialect/#community-dialects
https://docs.hibernate.org/orm/8.0/dialect/#third-party-dialects
https://github.com/mongodb/mongo-hibernate/
https://github.com/GoogleCloudPlatform/google-cloud-spanner-hibernate
https://hibernate.org/orm/releases/#compatibility-matrix
https://hibernate.org/orm/releases/#compatibility-matrix

You might also add the Hibernate bytecode enhancer to your Gradle build if you want to use field-level lazy fetching.

2.3. Configuration using JPA XML

Sticking to the JPA-standard approach, we would provide a file named persistence.xml, which we usually place in the META-INF directory
of a persistence archive, that is, of the . jar file or directory which contains our entity classes.

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

https://jakarta.ee/xml/ns/persistence/persistence_3_0.xsd"
version="2.0">

<persistence-unit name="org.hibernate.example">

<class>org.hibernate.example.Book</class>
<class>org.hibernate.example.Author</class>

<properties>
<!-- PostgreSQL -->
<property name="jakarta.persistence. jdbc.url"
value="jdbc:postgresql://localhost/example"/>

<!-- Credentials -->
<property name="jakarta.persistence.jdbc.user"
value="gavin"/>

<property name="jakarta.persistence.jdbc.password"

value="hibernate"/>

<!-- Automatic schema export -->
<property name="jakarta.persistence.schema-generation.database.action"
value="drop-and-create"/>

<!-- SQL statement logging -->

<property name="hibernate.show_sql" value="true"/>

<property name="hibernate.format_sql" value="true"/>

<property name="hibernate.highlight_sql" value="true"/>
</properties>

</persistence-unit>

</persistence>

The <persistence-unit>element defines a named persistence unit, that is:

« a collection of associated entity types, along with
« a set of default configuration settings, which may be augmented or overridden at runtime.

Each <class> element specifies the fully-qualified name of an entity class.

Scanning for entity classes

In some container environments, for example, in any EE container, the <class> elements are unnecessary, since the container will
scan the archive for annotated classes, and automatically recognize any class annotated @Entity.

Each <property> element specifies a configuration property and its value. Note that:

« the configuration properties in the jakarta.persistence namespace are standard properties defined by the JPA spec, and
* properties in the hibernate namespace are specific to Hibernate.

We may obtain an EntityManagerFactory by calling Persistence.createEntityManagerFactory():

EntityManagerFactory entityManagerFactory =
Persistence.createEntityManagerFactory("org.hibernate.example");

16

https://docs.hibernate.org/orm/8.0/userguide/html_single/#tooling-gradle

If necessary, we may override configuration properties specified in persistence. xml:

EntityManagerFactory entityManagerFactory =
Persistence.createEntityManagerFactory("org.hibernate.example",
Map.of (AvailableSettings. JAKARTA_JDBC_PASSWORD, password));

2.4. Programmatic configuration using JPA API
The new PersistenceConfiguration class allows full programmatic control over creation of the EntityManagerFactory.

EntityManagerFactory entityManagerFactory =

new PersistenceConfiguration("Bookshop")
.managedClass(Book.class)
.managedClass(Author.class)
// PostgreSQL
.property(PersistenceConfiguration.JDBC_URL, "jdbc:postgresql://localhost/example")
// Credentials
.property(PersistenceConfiguration.JDBC_USER, user)
.property(PersistenceConfiguration.JDBC_PASSWORD, password)
// Automatic schema export
.property(PersistenceConfiguration.SCHEMAGEN_DATABASE_ACTION,

Action.SPEC_ACTION_DROP_AND_CREATE)

// SQL statement logging
.property(JdbcSettings.SHOW_SQL, true)
.property(JdbcSettings.FORMAT_SQL, true)
.property(JdbcSettings.HIGHLIGHT_SQL, true)
// Create a new EntityManagerFactory
.createEntityManagerFactory();

The specification gives JPA implementors like Hibernate explicit permission to extend this class, and so Hibernate offers the
HibernatePersistenceConfiguration, which lets us obtain a SessionFactory without any need for a cast.

SessionFactory sessionFactory =
new HibernatePersistenceConfiguration("Bookshop")

.managedClass(Book.class)
.managedClass(Author.class)
// PostgreSQL
. jdbcUr1("jdbc:postgresql://localhost/example")
// Credentials
.jdbcCredentials(user, password)
// Automatic schema export
.schemaToolingAction(Action.SPEC_ACTION_DROP_AND_CREATE)
// SQL statement logging
.showSql(true, true, true)
// Create a new SessionFactory
.createEntityManagerFactory();

Alternatively, the venerable class Configuration offers similar functionality.

Advanced configuration options

Actually, these APIs are very simple facades resting on the much more powerful—but also more complex—APIs defined in the
package org.hibernate.boot. This APl is useful if you have very advanced requirements, for example, if you’re writing a framework or
implementing a container. You’ll find more information in the User Guide, and in the package-level documentation of
org.hibernate.boot.

2.5. Entity discovery

In a Jakarta EE container environment, we don’t usually need to list entity and embeddable classes explicitly in persistence.xml. Instead,
the container scans the persistence unit jar file and automatically discovers classes annotated @Entity, @mbeddable, or
@MappedSuperclass

HibernatePersistenceConfiguration offers the same functionality if the optional dependency hibernate-scan-jandex is available at
runtime.

17

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/jpa/HibernatePersistenceConfiguration.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/Configuration.html
https://docs.hibernate.org/orm/8.0/userguide/html_single/#bootstrap-native
https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/boot/package-summary.html

In the following code, entity classes available on the class loader which loaded Main. class are automatically discovered.

SessionFactory sessionFactory =

// entities discovered on ClassLoader of Main.class

new HibernatePersistenceConfiguration("Bookshop", Main.class)
// PostgreSQL
.jdbcUrl("jdbc:postgresql://localhost/example")
// Credentials
.jdbcCredentials(user, password)
// Automatic schema export
.schemaToolingAction(Action.SPEC_ACTION_DROP_AND_CREATE)
// SQL statement logging
.showSql(true, true, true)
// Create a new SessionFactory
.createEntityManagerFactory();

Notice that we were able to remove the calls to managedClass().

2.6. Configuration using Hibernate properties file

If we’re using programmatic configuration, but we don’t want to put certain configuration properties directly in the Java code, we can
specify them in a file named hibernate.properties, and place the file in the root classpath.

PostgreSQL

jakarta.persistence. jdbc.url=jdbc:postgresql://localhost/example
Credentials

jakarta.persistence. jdbc.user=hibernate

jakarta.persistence. jdbc.password=zAh7mY$2MNshzAQ5

SQL statement logging
hibernate.show_sql=true
hibernate.format_sql=true
hibernate.highlight_sql=true

2.7. Basic configuration settings

The PersistenceConfiguration class declares static final constants holding the names of all configuration properties defined by the
specification itself, for example, JDBC_URL holds the property name " jakarta.persistence. jdbc.driver".

Similarly, the class AvailableSettings enumerates all the configuration properties understood by Hibernate.

Of course, we’re not going to cover every useful configuration setting in this chapter. Instead, we’ll mention the ones you need to get
started, and come back to some other important settings later, especially when we talk about performance tuning.

Hibernate has many—too many—switches and toggles. Please don’t go crazy messing about with these settings; most of
them are rarely needed, and many only exist to provide backward compatibility with older versions of Hibernate. With
rare exception, the default behavior of every one of these settings was carefully chosen to be the behavior we recommend.

The properties you really do need to get started are these three:

Table 2.4: JDBC connection settings

Configuration property name Purpose
jakarta.persistence. jdbc.url JDBC URL of your database
jakarta.persistence. jdbc.user and Your database credentials

jakarta.persistence. jdbc.password

Since Hibernate 6, you don’t need to specify hibernate.dialect. The correct Hibernate SQL Dialect will be determined
for you automatically. The only reason to specify this property is if you’re using a custom user-written or third-party

o Dialect class.

Similarly, neither hibernate.connection.driver_class nor jakarta.persistence. jdbc.driver is needed when working
with one of the supported databases.

18

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/AvailableSettings.html
https://docs.hibernate.org/orm/8.0/dialect/#third-party-dialects

In some environments it’s useful to be able to start Hibernate without accessing the database. In this case, we must explicitly specify not
only the database platform, but also the version of the database, using the standard JPA configuration properties.

disable use of JDBC database metadata
hibernate.boot.allow_jdbc_metadata_access=false

explicitly specify database and version
jakarta.persistence.database-product-name=PostgreSQL
jakarta.persistence.database-major-version=15
jakarta.persistence.database-minor-version=7

The product name is the value returned by java.sql.DatabaseMetaData.getDatabaseProductName (), for example, PostgreSQL, MySQL, H2,
Oracle, EnterpriseDB, MariaDB, or Microsoft SQL Server.

Table 2.5: Settings needed when database is inaccessible at startup

Configuration property name Purpose

hibernate.boot.allow_jdbc_metadata_access Set to false to disallow access to the database at startup
jakarta.persistence.database-product-name The database product name, according to the JDBC driver
jakarta.persistence.database-major-versionand The major and minor versions of the database

jakarta.persistence.database-minor-version

Pooling JDBC connections is an extremely important performance optimization. You can set the size of Hibernate’s built-in connection pool

using this property:
Table 2.6: Built-in connection pool size

Configuration property name Purpose

hibernate.connection.pool_size The size of the connection pool

This configuration property is also respected when you use Agroal, HikariCP, or c3p0 for connection pooling.

By default, Hibernate uses a simplistic built-in connection pool. This pool is not meant for use in production, and later,
when we discuss performance, we’ll see how to select a more robust implementation.

Alternatively, in a container environment, you’ll need at least one of these properties:

Table 2.7: Transaction management settings

Configuration property name Purpose

jakarta.persistence.transactionType (Optional, defaults to JTA) Determines if transaction management is via JTA or resource-local

transactions. Specify RESOURCE_LOCAL if JTA should not be used.
jakarta.persistence.jtaDataSource JNDI name of a JTA datasource

jakarta.persistence.nonJtaDataSource JNDI name of a non-JTA datasource

In this case, Hibernate obtains pooled JDBC database connections from a container-managed DataSource.

2.8. Automatic schema export

You can have Hibernate infer your database schema from the mapping annotations you’ve specified in your Java code, and export the
schema at initialization time by specifying one or more of the following configuration properties:

19

Table 2.8: Schema management settings

Configuration property name

jakarta.persistence.schema-generation.database.action

jakarta.persistence.create-database-schemas

jakarta.persistence.schema-generation.create-source

jakarta.persistence.schema-generation.create-script-source
jakarta.persistence.sql-load-script-source

hibernate.hbm2ddl. import_files_sql_extractor

This feature is extremely useful for testing.

Purpose

If drop-and-create, first drop the schema, then export tables,
sequences, and constraints, and then populate initial data

If create, export tables, sequences, and constraints, without
attempting to drop them first, and then populate initial data

If create-drop, drop the schema and recreate it on SessionFactory
startup; additionally, drop the schema on SessionFactory
shutdown

If drop, drop the schema on SessionFactory shutdown

If validate, validate the database schema without changing it

If update, only export what’s missing in the schema, and alter
incorrect column types
« If populate, only populate initial data

(Optional) If true, automatically create schemas and catalogs

(Optional) If metadata-then-script or script-then-metadata, execute
an additional SQL script when exported tables and sequences

(Optional) The name of a SQL DDL script to be executed
(Optional) The name of a SQL DML script to be executed

(Optional) If multi-1ine, SQL statements may be split across multiple
lines in scripts, and must be ;-terminated.

The easiest way to pre-initialize a database with test or "reference" data is to place a list of SQL insert statementsin a file
named, for example, import.sql, and specify the path to this file using the property jakarta.persistence.sql-1load-
script-source. We've already seen an example of this approach, which is cleaner than writing Java code to instantiate

entity instances and calling persist() on each of them.

As we mentioned earlier, it can also be useful to control schema export programmatically.

The SchemaManager API allows programmatic control over schema export:

sessionFactory.getSchemaManager().create(true);

2.9. Logging the generated SQL

To see the generated SQL as it’s sent to the database, you have two options.

One way is to set the property hibernate.show_sql to true, and Hibernate will log SQL directly to the console. You can make the output
much more readable by enabling formatting or highlighting. These settings really help when troubleshooting the generated SQL

statements.
Table 2.9: Settings for SQL logging to the console
Configuration property name Purpose
hibernate.show_sql If true, log SQL directly to the console
hibernate.format_sql If true, log SQL in a multiline, indented format
hibernate.highlight_sql If true, log SQL with syntax highlighting via ANSI escape codes

Alternatively, you can enable DEBUG-level logging for the category org.hibernate. SQL using your preferred SLF4J logging implementation.

For example, if you’re using Log4J 2 (as above in Optional dependencies), add these lines to your 1log4j2.properties file:

SQL execution

20

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/relational/SchemaManager.html

logger.hibernate.name = org.hibernate.SQL
logger.hibernate.level = debug

JDBC parameter binding
logger.jdbc-bind.name=org.hibernate.orm. jdbc.bind
logger. jdbc-bind.level=trace

JDBC result set extraction

logger. jdbc-extract.name=org.hibernate.orm. jdbc.extract
logger.jdbc-extract.level=trace

JDBC batching
logger. jdbc-batch.name=org.hibernate.orm. jdbc.batch
logger.jdbc-batch.level=trace

SQL logging respects the settings hibernate.format_sql and hibernate.highlight_sql, so we don’t miss out on the pretty formatting and
highlighting.

2.10. Minimizing repetitive mapping information

The following properties are very useful for minimizing the amount of information you’ll need to explicitly specify in @Table and @Column
annotations, which we’ll discuss below in Object/relational mapping:

Table 2.10: Settings for minimizing explicit mapping information

Configuration property name Purpose

hibernate.default_schema A default schema name for entities which do not explicitly declare one
hibernate.default_catalog Adefault catalog name for entities which do not explicitly declare one
hibernate.physical_naming_strategy APhysicalNamingStrategy implementing your database naming standards
hibernate.implicit_naming_strategy An ImplicitNamingStrategy which specifies how "logical" names of relational objects should

be inferred when no name is specified in annotations

Writing your own PhysicalNamingStrategy and/or ImplicitNamingStrategy is an especially good way to reduce the
clutter of annotations on your entity classes, and to implement your database naming conventions, and so we think you
should do it for any nontrivial data model. We’ll have more to say about them in Naming strategies.

2.11. Quoting SQL identifiers

By default, Hibernate never quotes a SQL table or column name in generated SQL when the name contains only alphanumeric characters.
This behavior is usually much more convenient, especially when working with a legacy schema, since unquoted identifiers aren’t case-
sensitive, and so Hibernate doesn’t need to know or care whether a column is named NAME, name, or Name on the database side. On the other
hand, any table or column name containing a punctuation character like $ is automatically quoted by default.

The following settings enable additional automatic quoting:

Table 2.11: Settings for identifier quoting

Configuration property name Purpose
hibernate.auto_quote_keyword Automatically quote any identifier which is a SQL keyword
hibernate.globally_quoted_identifiers Automatically quote every identifier

Note that hibernate.globally_quoted_identifiersisasynonym for <delimited-identifiers/>in persistence.xml. We don’t recommend
the use of global identifier quoting, and in fact these settings are rarely used.

A better alternative is to explicitly quote table and column names where necessary, by writing @Table(name="\"View\") or

@Column(name="\"number\""). Since that’s kinda ugly, Hibernate lets us use a backtick as the quote character instead of
the double quote.

21

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/MappingSettings.html#DEFAULT_SCHEMA
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/MappingSettings.html#DEFAULT_CATALOG
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/MappingSettings.html#PHYSICAL_NAMING_STRATEGY
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/MappingSettings.html#IMPLICIT_NAMING_STRATEGY
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/MappingSettings.html#KEYWORD_AUTO_QUOTING_ENABLED
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/MappingSettings.html#GLOBALLY_QUOTED_IDENTIFIERS

2.12. Nationalized character data in SQL Server

By default, SQL Server’s char and varchar types don’t accommodate Unicode data. But a Java string may contain any Unicode character.
So, if you’re working with SQL Server, you might need to force Hibernate to use the nchar and nvarchar column types.

Table 2.12: Setting the use of nationalized character data

Configuration property name Purpose

hibernate.use_nationalized_character_data Use nchar and nvarchar instead of char and varchar

On the other hand, if only some columns store nationalized data, use the @Nationalized annotation to indicate fields of your entities which
map these columns.

Alternatively, you can configure SQL Server to use the UTF-8 enabled collation _UTF8.

2.13. Date and time types and JDBC

By default, Hibernate handles date and time types defined by java. time by:

* converting java. time types to JDBC date/time types defined in java.sql when sending data to the database, and
* reading java.sql types from JDBC and then converting them to java.time types when retrieving data from the database.

This works best when the database server time zone agrees with JVM system time zone.

We therefore recommend setting things up so that the database server and the JVM agree on the same time zone. Hint:
when in doubt, UTC is quite a nice time zone.

There are two system configuration properties which influence this behavior:

Table 2.13: Settings for JDBC date/time handling

Configuration property name Purpose
hibernate. jdbc.time_zone Use an explicit time zone when interacting with JDBC
hibernate.type.java_time_use_direct_jdbc Read and write java. time types directly to and from JDBC

You may set hibernate. jdbc. time_zone to the time zone of the database server if for some reason the JVM needs to operate in a different
time zone. We do not recommend this approach.

On the other hand, we would love to recommend the use of hibernate. type. java_time_use_direct_jdbc, but this option is still
experimental for now, and does result in some subtle differences in behavior which might affect legacy programs using Hibernate.

22

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/MappingSettings.html#USE_NATIONALIZED_CHARACTER_DATA
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/Nationalized.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/JdbcSettings.html#JDBC_TIME_ZONE
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/MappingSettings.html#JAVA_TIME_USE_DIRECT_JDBC

Chapter 3. Entities

An entity is a Java class which represents data in a relational database table. We say that the entity maps or maps to the table. Much less
commonly, an entity might aggregate data from multiple tables, but we’ll get to that later.

An entity has attributes—properties or fields—which map to columns of the table. In particular, every entity must have an identifier or id,
which maps to the primary key of the table. The id allows us to uniquely associate a row of the table with an instance of the Java class, at
least within a given persistence context.

We’ll explore the idea of a persistence context later. For now, think of it as a one-to-one mapping between ids and entity instances.

An instance of a Java class cannot outlive the virtual machine to which it belongs. But we may think of an entity instance having a lifecycle

which transcends a particular instantiation in memory. By providing its id to Hibernate, we may re-materialize the instance in a new
persistence context, as long as the associated row is present in the database. Therefore, the operations persist() and remove() may be
thought of as demarcating the beginning and end of the lifecycle of an entity, at least with respect to persistence.

Thus, an id represents the persistent identity of an entity, an identity that outlives a particular instantiation in memory. And this is an
important difference between entity class itself and the values of its attributes—the entity has a persistent identity, and a well-defined
lifecycle with respect to persistence, whereas a String or List representing one of its attribute values doesn’t.

An entity usually has associations to other entities. Typically, an association between two entities maps to a foreign key in one of the
database tables. A group of mutually associated entities is often called a domain model, though data model is also a perfectly good term.

3.1. Entity classes

An entity must:

* be anon-final class,
« with a non-private constructor with no parameters.

On the other hand, the entity class may be either concrete or abstract, and it may have any number of additional constructors.

An entity class may be a static inner class.

The requirement for a default constructor is relaxed when the bytecode enhancer is used.

Every entity class must be annotated @Entity.
@Entity

class Book {

Book () {3}

Alternatively, the class may be identified as an entity type by providing an XML-based mapping for the class.

Mapping entities using XML
When XML-based mappings are used, the <entity>element is used to declare an entity class:

<entity-mappings>
<package>org.hibernate.example</package>

<entity class="Book">
<attributes> ... </attributes>
</entity>

</entity-mappings>

Since the orm. xm1 mapping file format defined by the JPA specification was modelled closely on the annotation-based mappings, it’s
usually easy to go back and forth between the two options.

We won’t have much more to say about XML-based mappings in this Short Guide, since it’s not our preferred way to do things.

23

"Dynamic" models

We love representing entities as classes because the classes give us a type-safe model of our data. But Hibernate also has the ability
to represent entities as detyped instances of java.util.Map. There’s information in the User Guide, if you’re curious.

This must sound like a weird feature for a project that places importance on type-safety. Actually, it’s a useful capability for a very
particular sort of generic code. For example, Hibernate Envers is a great auditing/versioning system for Hibernate entities. Envers
makes use of maps to represent its versioned model of the data.

3.2. Access types

Each entity class has a default access type, either:

« direct field access, or
» property access.

Hibernate automatically determines the access type from the location of attribute-level annotations. Concretely:

« if afield is annotated @1Id, field access is used, or
« if a getter method is annotated @Id, property access is used.

Back when Hibernate was just a baby, property access was quite popular in the Hibernate community. Today, however, field access is much
more common.

The default access type may be specified explicitly using the @Access annotation, but we strongly discourage this, since
it’s ugly and never necessary.

Mapping annotations should be placed consistently:

« if @Id annotates a field, the other mapping annotations should also be applied to fields, or,
« if @Id annotates a getter, the other mapping annotations should be applied to getters.

Itisin principle possible to mix field and property access using explicit @Access annotations at the attribute level. We
don’t recommend doing this.

An entity class like Book, which does not extend any other entity class, is called a root entity. Every root entity must declare an identifier
attribute.

3.3. Entity class inheritance
An entity class may extend another entity class.
@Entity

class AudioBook extends Book {
AudioBook() {}

A subclass entity inherits every persistent attribute of every entity it extends.

A root entity may also extend another class and inherit mapped attributes from the other class. But in this case, the class which declares the
mapped attributes must be annotated @MappedSuperclass.

@MappedSuperclass
class Versioned {

@Entity
class Book extends Versioned {

A root entity class must declare an attribute annotated @Id, or inherit one from a @appedSuperclass. A subclass entity always inherits the

24

https://docs.hibernate.org/orm/8.0/userguide/html_single/#dynamic-model
https://hibernate.org/orm/envers/

identifier attribute of the root entity. It may not declare its own @Id attribute.

3.4. Identifier attributes

An identifier attribute is usually a field:

@Entity
class Book {

Book () {3}

@Id
Long id;

But it may be a property:
@Entity
class Book {
Book() {2}

private Long id;

@Id

Long getId() { return id; }

void setId(Long id) { this.id = id; }

An identifier attribute must be annotated @Id or @mbeddedId.

Identifier values may be:

« assigned by the application, that is, by your Java code, or

« generated and assigned by Hibernate.

We’ll discuss the second option first.

3.5. Generated identifiers

An identifier is often system-generated, in which case it should be annotated @Generatedvalue:

@Id @GeneratedValue
Long id;

System-generated identifiers, or surrogate keys make it easier to evolve or refactor the relational data model. If you have
the freedom to define the relational schema, we recommend the use of surrogate keys. On the other hand, if, as is more
common, you’re working with a pre-existing database schema, you might not have the option.

JPA defines the following strategies for generating ids, which are enumerated by GenerationType:

Strategy

GenerationType.UUID

GenerationType.IDENTITY

GenerationType.SEQUENCE

GenerationType.TABLE

Table 3.1: Standard id generation strategies

Java type

UUID or String

Long or Integer

Long or Integer

Long or Integer

Implementation

A Java UUID

An identity or autoincrement column
A database sequence

A database table

25

Strategy Java type Implementation

GenerationType.AUTO Long or Integer Selects SEQUENCE, TABLE, or UUID based on the identifier type and capabilities of the
database

For example, this UUID is generated in Java code:

@Id @GeneratedValue UUID id; // AUTO strategy selects UUID based on the field type

Thisid mapsto a SQL identity, auto_increment, or bigserial column:

@Id @GeneratedValue(strategy = IDENTITY) Long id;
The @SequenceGenerator and @TableGenerator annotations allow further control over SEQUENCE and TABLE generation respectively.
Consider this sequence generator:

@SequenceGenerator(name = "bookSeq", sequenceName = "seq_book", initialValue = 5, allocationSize=10)

Values are generated using a database sequence defined as follows:

create sequence seq_book start with 5 increment by 10

Notice that Hibernate doesn’t have to go to the database every time a new identifier is needed. Instead, a given process obtains a block of
ids, of size allocationSize, and only needs to hit the database each time the block is exhausted. Of course, the downside is that generated
identifiers are not contiguous.

values. But if you’re working with a database schema managed outside Hibernate, make sure the initialvalue and

: If you let Hibernate export your database schema, the sequence definition will have the right start with and increment
allocationSize members of @SequenceGenerator match the start with and increment specified in the DDL.

Any identifier attribute may now make use of the generator named bookSeq:

@Id
@GeneratedValue(generator = "bookSeq") // reference to generator defined elsewhere
Long id;

Actually, it’s extremely common to place the @SequenceGenerator annotation on the @Id attribute that makes use of it:

@Id

@GeneratedValue // uses the generator defined below
@SequenceGenerator(sequenceName = "seq_book", initialValue = 5, allocationSize=10)
Long id;

In this case, the name of the @SequenceGenerator should not be specified.

We may even place a @SequenceGenerator or @TableGenerator annotation at the package level:

@SequenceGenerator(sequenceName = "id_sequence", initialValue = 5, allocationSize=10)
@TableGenerator(table = "id_table", initialValue = 5, allocationSize=10)
package org.example.entities;

Then any entity in this package which specifies strategy=SEQUENCE or strategy=TABLE without also explicitly specifying a generator name will
be assigned a generator based on the package-level annotation.

@Id
@GeneratedValue(strategy=SEQUENCE) // uses the sequence generator defined at the package level
Long id;

As you can see, JPA provides quite adequate support for the most common strategies for system-generated ids. However, the annotations
themselves are a bit more intrusive than they should be, and there’s no well-defined way to extend this framework to support custom
strategies for id generation. Nor may @GeneratedValue be used on a property not annotated @Id. Since custom id generation is a rather
common requirement, Hibernate provides a very carefully-designed framework for user-defined Generators, which we’ll discuss in User-

26

defined generators.

3.6. Natural keys as identifiers

Not every identifier attribute maps to a (system-generated) surrogate key. Primary keys which are meaningful to the user of the system are
called natural keys.

When the primary key of a table is a natural key, we don’t annotate the identifier attribute @Generatedvalue, and it’s the responsibility of the
application code to assign a value to the identifier attribute.

@Entity

class Book {
@Id
String isbn;

Of particular interest are natural keys which comprise more than one database column, and such natural keys are called composite keys.

3.7. Composite identifiers

If your database uses composite keys, you’ll need more than one identifier attribute. There are two ways to map composite keys in JPA:

* using an @IdClass, or
* using an @EmbeddedId.

Perhaps the most immediately-natural way to represent this in an entity class is with multiple fields annotated @Id, for example:

@Entity
@IdClass(BookId.class)
class Book {

Book() {3

@Id
String isbn;

@Id
int printing;

But this approach comes with a problem: what object can we use to identify a Book and pass to methods like find() which accept an
identifier?

The solution is to write a separate class with fields that match the identifier attributes of the entity. Every such id class must override
equals() and hashCode(). Of course, the easiest way to satisfy these requirements is to declare the id class as a record.

record BookId(String isbn, int printing) {}
The @IdClass annotation of the Book entity identifies BookId as the id class to use for that entity.
This is not our preferred approach. Instead, we recommend that the BookId class be declared as an @Embeddable type:

@Embeddable
record BookId(String isbn, int printing) {}

We’ll learn more about Embeddable objects below.
Now the entity class may reuse this definition using @EmbeddedId, and the @IdClass annotation is no longer required:
@Entity

class Book {

Book() {3

@EmbeddedId

27

BookId bookId;

This second approach eliminates some duplicated code.

Either way, we may now use BookId to obtain instances of Book:

Book book = session.find(Book.class, new BookId(isbn, printing));

3.8. Version attributes

An entity may have an attribute which is used by Hibernate for optimistic lock verification. A version attribute is usually of type Integer,
Short, Long, LocalDateTime, Of fsetDateTime, ZonedDateTime, Oor Instant

@Version
int version;

@Version
LocalDateTime lastUpdated;

A version attribute is automatically assigned by Hibernate when an entity is made persistent, and automatically incremented or updated
each time the entity is updated.

If the version attribute is numeric, then an entity is, by default, assigned the version number @ when it’s first made persistent. It’s easy to
specify that the initial version should be assigned the number 1 instead:

@Version
int version = 1; // the initial version number

If the version attribute is an Instant or datetime, the value assigned to the attribute is generated in the JVM by default.

If the datetime value should be generated by the database, the @version annotation may be used in conjunction with a
generator annotation, for example:

@CurrentTimestamp @Version
LocalDateTime lastUpdated;

Almost every entity which is frequently updated should have a version attribute.

If an entity doesn’t have a version number, which often happens when mapping legacy data, we can still do optimistic
locking. The @0optimisticLocking annotation lets us specify that optimistic locks should be checked by validating the
values of ALL fields, or only the DIRTY fields of the entity. And the @0optimisticLock annotation lets us selectively exclude
certain fields from optimistic locking.

The @Id and @Version attributes we’ve already seen are just specialized examples of basic attributes.

3.9. Natural id attributes

Even when an entity has a surrogate key, it should always be possible to write down a combination of fields which uniquely identifies an
instance of the entity, from the point of view of the user of the system. This combination of fields is its natural key. Above, we considered
the case where the natural key coincides with the primary key. Here, the natural key is a second unique key of the entity, distinct from its
surrogate primary key.

model. If an entity doesn’t have a meaningful unique key, then it’s impossible to say what event or object it represents in

o If you can’t identify a natural key, it might be a sign that you need to think more carefully about some aspect of your data
the "real world" outside your program.

Since it’s extremely common to retrieve an entity based on its natural key, Hibernate has a way to mark the attributes of the entity which
make up its natural key. Each attribute must be annotated @NaturallId.

@Entity

28

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/OptimisticLocking.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/OptimisticLock.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/NaturalId.html

class Book {

Book() {3

@Id @GeneratedValue
Long id; // the system-generated surrogate key

@Naturalld
String isbn; // belongs to the natural key

@Naturalld
int printing; // also belongs to the natural key

Hibernate automatically generates a UNIQUE constraint on the columns mapped by the annotated fields.

Consider using the natural id attributes to implement equals() and hashCode ().

In cases where the natural id is defined by multiple attributes, Hibernate also offers the @NaturalIdClass annotation which acts similarly to
the Jakarta Persistence @IdClass annotation for find operations -

record BookKey(String isbn, int printing) {}

@Entity
@NaturalIdClass(BookKey.class)
class Book {

See the User Guide for more details about natural ids.

The payoff for doing this extra work, as we will see much later, is that we can take advantage of optimized natural id lookups that make use
of the second-level cache.

Note that even when you’ve identified a natural key, we still recommend the use of a generated surrogate key in foreign keys, since this

makes your data model much easier to change.

3.10. Basic attributes

A basic attribute of an entity is a field or property which maps to a single column of the associated database table. The JPA specification
defines a quite limited set of basic types:

Table 3.2: JPA-standard basic attribute types

Classification Package Types

Primitive types boolean, int, double, etc
Primitive wrappers java.lang Boolean, Integer, Double, etc
Strings java.lang String

Arbitrary-precision numeric types java.math BigInteger,BigDecimal
UUIDs java.util uuID

Date/time types java.time LocalDate, LocalTime, LocalDateTime, Of fsetDateTime, Instant, Year
Deprecated date/time types & java.util Date, Calendar

Deprecated JDBC date/time types @ java.sql Date, Time, Timestamp

Binary and character arrays byte[], char[]

Binary and character wrapper arrays @ java.lang Byte[], Character[]

29

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/NaturalIdClass.html
https://docs.hibernate.org/orm/8.0/userguide/html_single/#naturalid

Classification Package Types

Enumerated types Any enum
Serializable types Any type which implements java.io.Serializable
o We’re begging you to use types from the java. time package instead of anything which inherits java.util.Date.

The use of Byte[] and Character[] as basic types was deprecated by Jakarta Persistence 3.2. Hibernate does not allow
null elements in such arrays. Use byte[] or char[]instead.

Serializing a Java object and storing its binary representation in the database is usually wrong. As we’ll soon see in
Embeddable objects, Hibernate has much better ways to handle complex Java objects.

Hibernate slightly extends this list with the following types:

Table 3.3: Additional basic attribute types in Hibernate

Classification Package Types

Additional date/time types java.time Duration, Zoneld, ZoneOffset, and even ZonedDateTime
JDBC LOB types java.sql Blob, Clob, NClob

Java class object java.lang Class

Internet addresses java.net InetAddress

Miscellaneous types java.util Currency, Locale, URL, TimeZone

The @Basic annotation explicitly specifies that an attribute is basic, but it’s often not needed, since attributes are assumed basic by default.
On the other hand, if a non-primitively-typed attribute cannot be null, use of @Basic(optional=false) is highly recommended.

@Basic(optional=false) String firstName;
@Basic(optional=false) String lastName;
String middleName; // may be null

Note that primitively-typed attributes are inferred NOT NULL by default.

How to make a column not null in JPA

There are two standard ways to add a NOT NULL constraint to a mapped column in JPA:

* using @Basic(optional=false), or

* using @Column(nullable=false).
You might wonder what the difference is.
Well, it’s perhaps not obvious to a casual user of the JPA annotations, but they actually come in two "layers":

+ annotations like @Entity, @Id, and @Basic belong to the logical layer, the subject of the current chapter—they specify the
semantics of your Java domain model, whereas

+ annotations like @Table and @Column belong to the mapping layer, the topic of the next chapter—they specify how elements of the
domain model map to objects in the relational database.

Information may be inferred from the logical layer down to the mapping layer, but is never inferred in the opposite direction.

Now, the @Column annotation, to whom we’ll be properly introduced a bit later, belongs to the mapping layer, and so its nullable
member only affects schema generation (resulting in a not null constraintin the generated DDL). On the other hand, the @Basic
annotation belongs to the logical layer, and so an attribute marked optional=false is checked by Hibernate before it even writes an
entity to the database. Note that:

* optional=false implies nullable=false, but

30

* nullable=false does notimply optional=false.

Therefore, we prefer @Basic(optional=false) to @Column(nullable=false).

But wait! An even better solution is to use the @otNull annotation from Bean Validation. Just add Hibernate
Validator to your project build, as described in Optional dependencies.

3.11. Enumerated types

We included Java enums on the list above. An enumerated type is considered a sort of basic type, but since most databases don’t have a
native ENUM type, JPA provides a special @numerated annotation to specify how the enumerated values should be represented in the
database:

* by default, an enum is stored as an integer, the value of its ordinal () member, but
« if the attribute is annotated @Enumerated (STRING), it will be stored as a string, the value of its name () member.

//here, an ORDINAL encoding makes sense
@Enumerated

@Basic(optional=false)

DayOfWeek dayOfWeek;

//but usually, a STRING encoding is better
@Enumerated(EnumType. STRING)
@Basic(optional=false)

Status status;

The @EnumeratedValue annotation allows the column value to be customized:

enum Resolution {
UNRESOLVED(Q), FIXED(1), REJECTED(-1);

@EnumeratedValue // store the code, not the enum ordinal() value
final int code;

Resolution(int code) {
this.code = code;

Since Hibernate 6, an enum annotated @Enumerated (STRING) is mapped to:

* a VARCHAR column type with a CHECK constraint on most databases, or
* an ENUM column type on MySQL.

Any other enum is mapped to a TINYINT column with a CHECK constraint.

JPA picks the wrong default here. In most cases, storing an integer encoding of the enum value makes the relational data
harder to interpret.

Even considering DayOfWeek, the encoding to integers is ambiguous. If you check java. time.DayOfWeek, you’ll notice that
SUNDAY is encoded as 6. But in the country | was born, SUNDAY is the first day of the week!

So we prefer @numerated(STRING) for most enum attributes.

An interesting special case arises on PostgreSQL and Oracle.

Named enumerated types

Some databases support named ENUM types, which must be declared using in DDL using:

* CREATE TYPE .. AS ENUM on PostgreSQL, or
» CREATE DOMAIN .. AS ENUMon Oracle.

These look like a perfect match for Java enums, which also have names!

Sadly, these ENUM types aren’t well-integrated with the SQL language, nor well-supported by the JDBC drivers, so Hibernate doesn’t
use them by default. But if you would like to use a named enumerated type on Postgres or Oracle, just annotate your enum attribute
like this:

@JdbcTypeCode(SqlTypes.NAMED_ENUM)
@Basic(optional=false)
Status status;

Alternatively, you may enable the configuration property hibernate. type.prefer_native_enum_types.

The limited set of pre-defined basic attribute types can be stretched a bit further by supplying a converter.

3.12. Converters

A JPA AttributeConverter is responsible for:

« converting a given Java type to one of the types listed above, and/or

« perform any other sort of pre- and post-processing you might need to perform on a basic attribute value before writing and reading it to
or from the database.

Converters substantially widen the set of attribute types that can be handled by JPA.
There are two ways to apply a converter:

* the @Convert annotation applies an AttributeConverter to a particular entity attribute, or

* the @Converter annotation (or, alternatively, the @ConverterRegistration annotation) registers an AttributeConverter for automatic
application to all attributes of a given type.

For example, the following converter will be automatically applied to any attribute of type EnumSet<DayOfWeek>, and takes care of persisting
the EnumSet<DayOfWeek> to a column of type INTEGER:

@Converter(autoApply = true)
public static class EnumSetConverter
// converts Java values of type EnumSet<DayOfWeek> to integers for storage in an INT column
implements AttributeConverter<EnumSet<DayOfWeek>,Integer> {
@0verride
public Integer convertToDatabaseColumn(EnumSet<DayOfWeek> enumSet) {
int encoded = 0;
var values = DayOfWeek.values();
for (int i = 0; i<values.length; i++) {
if (enumSet.contains(values[i1)) {

encoded |= 1<<i;
}
}
return encoded;
}
@Override

public EnumSet<DayOfWeek> convertToEntityAttribute(Integer encoded) {
var set = EnumSet.noneOf (DayOfWeek.class);
var values = DayOfWeek.values();
for (int i = 0; i<values.length; i++) {
if (((1<<i) & encoded) != 0) {
set.add(values[i]);

}

return set;

On the other hand, if we don’t set autoapply=true, then we must explicitly apply the converter using the @Convert annotation:

@Convert(converter = EnumSetConverter.class)
@Basic(optional = false)
EnumSet<DayOfWeek> daysOfWeek;

32

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/MappingSettings.html#PREFER_NATIVE_ENUM_TYPES

Converters are supposed to be used for type conversion. Some enterprising members of the community have noticed
that they can be (mis)used to perform other tasks: trimming whitespace, normalizing case, assigning a default value in
place of null, and so on. Hibernate tolerates but does not encourage such (mis)use. In particular, we strongly recommend
against defining an autoApply converter acting on a basic type.

All this is nice, but it probably won’t surprise you that Hibernate goes beyond what is required by JPA.

3.13. Compositional basic types

Hibernate considers a "basic type" to be formed by the marriage of two objects:

* a JavaType, which models the semantics of a certain Java class, and
* a JdbcType, representing a SQL type which is understood by JDBC.

When mapping a basic attribute, we may explicitly specify a JavaType, a JdbcType, or both.
JavaType

Aninstance of org.hibernate. type.descriptor. java.JavaType represents a particular Java class. It’s able to:

« compare instances of the class to determine if an attribute of that class type is dirty (modified),

« produce a useful hash code for an instance of the class,

« coerce values to other types, and, in particular,

« convert an instance of the class to one of several other equivalent Java representations at the request of its partner JdbcType.

For example, IntegerJavaType knows how to convert an Integer or int value to the types Long, BigInteger, and String, among others.

We may explicitly specify a Java type using the @JavaType annotation, but for the built-in JavaTypes this is never necessary.

@JavaType(LongJavaType.class) // not needed, this is the default JavaType for long
long currentTimeMillis;

For a user-written JavaType, the annotation is more useful:

@JavaType(BitSetJavaType.class)
BitSet bitSet;

Alternatively, the @JavaTypeRegistration annotation may be used to register BitSetJavaType as the default JavaType for BitSet.
JdbcType

Anorg.hibernate. type.descriptor. jdbc. JdbcType is able to read and write a single Java type from and to JDBC.
For example, VarcharJdbcType takes care of:

« writing Java strings to JDBC PreparedStatements by calling setString(), and
« reading Java strings from JDBC ResultSets using getString().

By pairing LongJavaType with VarcharJdbcType in holy matrimony, we produce a basic type which maps Longs and primitive longss to the
SQL type VARCHAR.

We may explicitly specify a JDBC type using the @JdbcType annotation.

@JdbcType(VarcharJdbcType.class)
long currentTimeMillis;

Alternatively, we may specify a JDBC type code:

@JdbcTypeCode(Types. VARCHAR)
long currentTimeMillis;

The @JdbcTypeRegistration annotation may be used to register a user-written JdbcType as the default for a given SQL type code.

33

JDBC types and JDBC type codes

The types defined by the JDBC specification are enumerated by the integer type codes in the class java.sql.Types. Each JDBC type is
an abstraction of a commonly-available type in SQL. For example, Types. VARCHAR represents the SQL type VARCHAR (or VARCHAR2 on
Oracle).

Since Hibernate understands more SQL types than JDBC, there’s an extended list of integer type codes in the class
org.hibernate.type.SqlTypes. For example, SqlTypes.GEOMETRY represents the spatial data type GEOMETRY.

AttributeConverter

If a given JavaType doesn’t know how to convert its instances to the type required by its partner JdbcType, we must help it out by providing
a JPA AttributeConverter to perform the conversion.

For example, to form a basic type using LongJavaType and TimestampJdbcType, we would provide an AttributeConverter<Long, Timestamp>.

@JdbcType(TimestampJdbcType.class)
@Convert(converter = LongToTimestampConverter.class)
long currentTimeMillis;

Let’s abandon our analogy right here, before we start calling this basic type a "throuple".

3.14. Date and time types, and time zones

Dates and times should always be represented using the types defined in java. time.

for these types has even been officially deprecated in JPA 3.2. Eventually, we hope to completely remove support for

Never use the legacy types java.sql.Date, java.sql.Time, java.sql.Timestamp, or java.util.Date. At our urging, support
A these types from the JPA spec and from Hibernate.

Some of the types in java. time map naturally to an ANSI SQL column type. A source of confusion is that some databases still don’t follow
the ANSI standard naming here. Also, as you’re probably aware, the DATE type on Oracle is not an ANSI SQL DATE. In fact, Oracle doesn’t have
DATE or TIME types—every date or time must be stored as a timestamp.

Table 3.4: Type mappings from java.time to ANSI SQL

java.time class ANSI SQL type MySQL SQL Server Oracle

LocalDate DATE DATE DATE DATE &

LocalTime TIME TIME TIME TIMESTAMP &
LocalDateTime TIMSTAMP DATETIME DATETIME2 TIMESTAMP
OffsetDateTime, TIMESTAMP WITH TIME TIMESTAMP DATETIMEOFFSET TIMESTAMP WITH TIME
ZonedDateTime ZONE ZONE

On the other hand, there are no perfectly natural mappings for Instant and Duration on most databases. By default:

* Duration is mapped to a column of type NUMERIC(21) holding the length of the duration in nanoseconds, and
* Instant is mapped to a column of type TIMESTAMP (DATETIME on MySQL).

Fortunately, these mappings can be modified by specifying the JdbcType.

For example, if we wanted to store an Instant using TIMESTAMP WITH TIME ZONE (TIMESTAMP on MySQL) instead of TIMESTAMP, then we could
annotate the field:

// store the Instant as a TIMESTAMP WITH TIME ZONE, instead of as a TIMESTAMP
@JdbcTypeCode(SqlTypes. TIMESTAMP_WITH_TIMEZONE)
Instant instant;

Alternatively, we could set the configuration property hibernate. type.preferred_instant_jdbc_type:
// store field of type Instant as TIMESTAMP WITH TIME ZONE, instead of as a TIMESTAMP

34

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/type/SqlTypes.html
https://in.relation.to/2024/04/22/stop-using-date/

config.setProperty(MappingSettings.PREFERRED_INSTANT_JDBC_TYPE, SqlTypes.TIMESTAMP_WITH_TIMEZONE);

We have worked very hard to make sure that Java date and time types work with consistent and correct semantics across all databases
supported by Hibernate. In particular, Hibernate is very careful in how it handles time zones.

Unfortunately, with the notable exception of Oracle, most SQL databases feature embarrassingly poor support for
timezones. Even some databases which do supposedly support TIMESTAMP WITH TIME ZONE simply covert the datetime to
UTC. Here, Hibernate is limited by the capabilities of the databases themselves, and so on many databases, time zone
information will not, by default, be preserved for an 0OffsetDateTime or ZonedDateTime.

The still-experimental annotation @TimeZoneStorage provides some additional options in case the default behavior falls
short.

3.15. Embeddable objects

An embeddable object is a Java class whose state maps to multiple columns of a table, but which doesn’t have its own persistent identity.
That s, it’s a class with mapped attributes, but no @Id attribute.

An embeddable object can only be made persistent by assigning it to the attribute of an entity. Since the embeddable object does not have
its own persistent identity, its lifecycle with respect to persistence is completely determined by the lifecycle of the entity to which it
belongs.

An embeddable class must be annotated @Embeddable instead of @Entity.

@Embeddable
class Name {

@Basic(optional=false)
String firstName;

@Basic(optional=false)
String lastName;

String middleName;
Name() {3}

Name(String firstName, String middleName, String lastName) {
this.firstName = firstName;
this.middleName = middleName;
this.lastName = lastName;

An embeddable class must satisfy the same requirements that entity classes satisfy, with the exception that an embeddable class has no
@Id attribute. In particular, it must have a constructor with no parameters.

Alternatively, an embeddable type may be defined as a Java record type:

@Embeddable
record Name(String firstName, String middleName, String lastName) {}

In this case, the requirement for a constructor with no parameters is relaxed.

We may now use our Name class (or record) as the type of an entity attribute:
@Entity
class Author {
@Id @GeneratedValue
Long id;

Name name;

35

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/TimeZoneStorage.html

Embeddable types can be nested. That is, an @Embeddable class may have an attribute whose type is itself a different @mbeddable class.

JPA provides an @Embedded annotation to identify an attribute of an entity that refers to an embeddable type. This
annotation is completely optional, and so we don’t usually use it.

On the other hand a reference to an embeddable type is never polymorphic. One @Embeddable class F may inherit a second @Embeddable
classR, but an attribute of type R will always refer to an instance of that concrete class R, never to an instance of F.

Usually, embeddable types are stored in a "flattened" format. Their attributes map columns of the table of their parent entity. Later, in
Mapping embeddable types to UDTs or to JSON, we’ll see a couple of different options.

An attribute of embeddable type represents a relationship between a Java object with a persistent identity, and a Java object with no
persistent identity. We can think of it as a whole/part relationship. The embeddable object belongs to the entity, and can’t be shared with
other entity instances. And it exists for only as long as its parent entity exists.

Next we’ll discuss a different kind of relationship: a relationship between Java objects which each have their own distinct persistent identity

and persistence lifecycle.

3.16. Associations

An association is a relationship between entities. We usually classify associations based on their multiplicity. If R and F are both entity
classes, then:

* a one-to-one association relates at most one unique instance R with at most one unique instance of F,
« a many-to-one association relates zero or more instances of R with a unique instance of F, and
* a many-to-many association relates zero or more instances of R with zero or more instance of F.

An association between entity classes may be either:

* unidirectional, navigable from R to F but not from F toR, or
« bidirectional, and navigable in either direction.

In this example data model, we can see the sorts of associations which are possible:

Person Publisher
1
@OneToMany 1
(unidirectional) bidirectional)
@O0neToOne | D1 @MonyToOne |
(bidirectional)
- -

Author \1 J Book

J @MoanyToMany @ManyToMany L

An astute observer of the diagram above might notice that the relationship we’ve presented as a unidirectional one-to-
one association could reasonably be represented in Java using subtyping. This is quite normal. A one-to-one association
is the usual way we implement subtyping in a fully-normalized relational model. It’s related to the JOINED inheritance
mapping strategy.

There are three annotations for mapping associations: @anyToOne, @neToMany, and @anyToMany. They share some common annotation
members:

Table 3.5: Association-defining annotation members

Member Interpretation Default value
cascade Persistence operations which should cascade to the associated entity; a {3
list of CascadeTypes

36

Member Interpretation Default value

fetch Whether the association is eagerly fetched or may be proxied * LAZY for @OneToMany and @ManyToMany
* EAGER for @anyToone @ @ &

targetEntity The associated entity class Determined from the attribute type declaration
optional For a @anyToOne or @neToOne association, whether the association can true

be null
mappedBy For a bidirectional association, an attribute of the associated entity which By default, the association is assumed

maps the association unidirectional

We’ll explain the effect of these members as we consider the various types of association mapping.

It’s not a requirement to represent every foreign key relationship as an association at the Java level. It’s perfectly acceptable to replace a
@ManyToOne mapping with a basic-typed attribute holding an identifier, if it’s inconvenient to think of this relationship as an association at
the Java level. That said, it’s possible to take this idea way too far.

@ Aggregates ®

It’s come to our attention that a vocal group of people advocate that Java entity classes should be broken up into tiny disconnected
islands they call "aggregates". An aggregate—at least as a first approximation—corresponds roughly to what we would usually call a
parent/child relationship. Simple examples of aggregates might be Order/Item, or Product/Part. According to this way of thinking,
there should be no associations between aggregates. So the Item.product association should be replaced with productId,
Part.manufacturer should be replaced with manufacturerId, and so on. (Of course, the word "aggregate" may also be employed in
other senses, but this is the sense we’re discussing right now.)

In the example we’ve been using, Book would not be permitted to have a collection of entity type Author, and should instead hold
only the ids of the authors, or perhaps instances of some BookAuthor type which duplicates some state of Author and is disconnected
from the rest of the model.

Let’s stipulate that this might be a perfectly natural thing to do in certain contexts, for example, when accessing a document
database. But one context where it doesn’t usually make sense is when accessing a relational database via Hibernate. The reason is
that Hibernate offers rich functionality for optimizing access to associated data, including:

« the second level cache, and
« join, batch, and subselect fetching, whether via HQL, entity graphs, or fetch profiles.

But all this functionality is lost if Hibernate doesn’t know it’s dealing with an association, inevitably making the application program
much more vulnerable to problems with N+1 selects, just as soon as we encounter a business requirement which involves data from
more than one aggregate. (Always keep in mind that business requirements change much faster than relational data models!)

To put it mildly: this is not how JPA was ever intended to be used.

It’s difficult to respond charitably to most of the arguments in favor of this approach, since most of them don’t rise above the level of
hand-waving at boxes on drawn on whiteboards. An argument we can respond to is the concern that transparent lazy fetching can
lead to "accidental" fetching of an association and the potential for N+1 selects. This is a legit concern, and one we worry about too,
but where it’s really a problem we have a much better solution: just use a StatelessSession, or a Jakarta Data repository, where
association fetching is always an explicit operation. Indeed, StatelessSession even guards against accidental updates, since
update() is always an explicit operation.

Now that we know that associations are actually good and useful, let’s see how to model the various kinds of association we might find
need to map to a relational data model. We begin with the most common association multiplicity.

3.17. Many-to-one

A many-to-one association is the most basic sort of association we can imagine. It maps completely naturally to a foreign key in the
database. Almost all the associations in your domain model are going to be of this form.

Later, we’ll see how to map a many-to-one association to an association table.

The @ManyToOne annotation marks the "to one" side of the association, so a unidirectional many-to-one association looks like this:

class Book {

37

@Id @GeneratedValue
Long id;

@ManyToOne(fetch=LAZY)
Publisher publisher;

Here, the Book table has a foreign key column holding the identifier of the associated Publisher.

Avery unfortunate misfeature of JPA is that @anyToOne associations are fetched eagerly by default. This is almost never
what we want. Almost all associations should be lazy. The only scenario in which fetch=EAGER makes sense is if we think
there’s always a very high probability that the associated object will be found in the second-level cache. Whenever this
isn’t the case, remember to explicitly specify fetch=LAzY.

Most of the time, we would like to be able to easily navigate our associations in both directions. We do need a way to get the Publisher of a
given Book, but we would also like to be able to obtain all the Books belonging to a given publisher.

To make this association bidirectional, we need to add a collection-valued attribute to the Publisher class, and annotate it @neToMany.

Hibernate needs to proxy unfetched associations at runtime. Therefore, the many-valued side must be declared using an
interface type like Set or List, and never using a concrete type like HashSet or ArrayList.

To indicate clearly that this is a bidirectional association, and to reuse any mapping information already specified in the Book entity, we
must use the mappedBy annotation member to refer back to Book.publisher.

@Entity

class Publisher {
@Id @GeneratedValue
Long id;

@0oneToMany (mappedBy="publisher")
Set<Book> books;

The Publisher.books field is called the unowned side of the association.

Now, we passionately hate the stringly-typed mappedBy reference to the owning side of the association. Thankfully, the Hibernate Processor
gives us a way to make it a bit more type safe:

@0neToMany (mappedBy=Book_.PUBLISHER) // get used to doing it this way!
Set<Book> books;

We’re going to use this approach for the rest of the Short Guide.
To modify a bidirectional association, we must change the owning side.

Changes made to the unowned side of an association are never synchronized to the database. If we desire to change an
association in the database, we must change it from the owning side. Here, we must set Book . publisher.

A In fact, it’s often necessary to change both sides of a bidirectional association. For example, if the collection
Publisher.books was stored in the second-level cache, we must also modify the collection, to ensure that the second-
level cache remains synchronized with the database.

That said, it’s not a hard requirement to update the unowned side, at least if you’re sure you know what you’re doing.

In principle Hibernate does allow you to have a unidirectional one-to-many, that is, a @neToMany with no matching
@ManyToOne on the other side. In practice, this mapping is unnatural, and just doesn’t work very well. Avoid it.

Here we’ve used Set as the type of the collection, but Hibernate also allows the use of List or Collection here, with almost no difference in
semantics. In particular, the List may not contain duplicate elements, and its order will not be persistent.

@0OneToMany (mappedBy=Book_.PUBLISHER)

38

Collection<Book> books;

We’ll see how to map a collection with a persistent order much later.

Set, List, or Collection?

A one-to-many association mapped to a foreign key can never contain duplicate elements, so Set seems like the most semantically
correct Java collection type to use here, and so that’s the conventional practice in the Hibernate community.

The catch associated with using a set is that we must carefully ensure that Book has a high-quality implementation of equals() and
hashCode (). Now, that’s not necessarily a bad thing, since a quality equals() is independently useful.

But what if we used Collection or List instead? Then our code would be much less sensitive to how equals() and hashCode() were
implemented.

In the past, we were perhaps too dogmatic in recommending the use of Set. Now? | guess we’re happy to let you guys decide. In
hindsight, we could have done more to make clear that this was always a viable option.

3.18. One-to-one (first way)

The simplest sort of one-to-one association is almost exactly like a @anyToOne association, except that it maps to a foreign key column with
a UNIQUE constraint.

Later, we’ll see how to map a one-to-one association to an association table.

A one-to-one association must be annotated @oneToOne:

@Entity

class Author {
@Id @GeneratedValue
Long id;

@oneToOne(optional=false, fetch=LAZY)
Person person;

Here, the Author table has a foreign key column holding the identifier of the associated Person.

A one-to-one association often models a "type of" relationship. In our example, an Author is a type of Person. An
alternative—and often more natural—way to represent "type of" relationships in Java is via entity class inheritance.

We can make this association bidirectional by adding a reference back to the Author in the Person entity:
@Entity
class Person {
@Id @GeneratedValue
Long id;

@0OneToOne(mappedBy = Author_.PERSON)
Author author;

Person.author is the unowned side, because it’s the side marked mappedBy.

Lazy fetching for one-to-one associations

Notice that we did not declare the unowned end of the association fetch=LAZY. That’s because:

1. not every Person has an associated Author, and

39

2. the foreign key is held in the table mapped by Author, not in the table mapped by Person.
Therefore, Hibernate can’t tell if the reference from Person to Author is null without fetching the associated Author.

On the other hand, if every Person was an Author, that is, if the association were non-optional, we would not have to consider the
possibility of null references, and we would map it like this:

@oneToOne(optional=false, mappedBy = Author_.PERSON, fetch=LAZY)
Author author;

This is not the only sort of one-to-one association.

3.19. One-to-one (second way)

An arguably more elegant way to represent such a relationship is to share a primary key between the two tables.

To use this approach, the Author class must be annotated like this:

@Entity

class Author {
@Id
Long id;

@0oneToOne(optional=false, fetch=LAZY)
@MapsId
Person person;

Notice that, compared with the previous mapping:

* the @Id attribute is no longer a @Generatedvalue and,
* instead, the author association is annotated @apsId.

This lets Hibernate know that the association to Person is the source of primary key values for Author.

Here, there’s no extra foreign key column in the Author table, since the id column holds the identifier of Person. That is, the primary key of
the Author table does double duty as the foreign key referring to the Person table.

The Person class doesn’t change. If the association is bidirectional, we annotate the unowned side @oneToOne (mappedBy = Author_.PERSON)
just as before.

3.20. Many-to-many

A unidirectional many-to-many association is represented as a collection-valued attribute. It always maps to a separate association table in
the database.

It tends to happen that a many-to-many association eventually turns out to be an entity in disguise.

Suppose we start with a nice clean many-to-many association between Author and Book. Later on, it’s quite likely that
we’ll discover some additional information which comes attached to the association, so that the association table needs
some extra columns.

For example, imagine that we needed to report the percentage contribution of each author to a book. That information
naturally belongs to the association table. We can’t easily store it as an attribute of Book, nor as an attribute of Author.

When this happens, we need to change our Java model, usually introducing a new entity class which maps the
association table directly. In our example, we might call this entity something like BookAuthorship, and it would have
@oneToMany associations to both Author and Book, along with the contribution attribute.

We can evade the disruption occasioned by such "discoveries" by simply avoiding the use of @anyToMany right from the
start. There’s little downside to representing every—or at least almost every—logical many-to-many association using an
intermediate entity.

A many-to-many association must be annotated @ManyToMany:

40

@Entity

class Book {
@Id @GeneratedValue
Long id;

@ManyToMany
Set<Author> authors;

If the association is bidirectional, we add a very similar-looking attribute to Book, but this time we must specify mappedBy to indicate that this

is the unowned side of the association:

@Entity

class Book {
@Id @GeneratedValue
Long id;

@anyToMany (mappedBy=Author_.BOOKS)
Set<Author> authors;

Remember, if we wish to the modify the collection we must change the owning side.

We’ve again used Sets to represent the association. As before, we have the option to use Collection orList. Butin this case it does make a

difference to the semantics of the association.

A many-to-many association represented as a Collection or List may contain duplicate elements. However, as before,
the order of the elements is not persistent. That is, the collection is a bag, not a set.

We don’t usually map collections with fetch=EAGER, since that usually leads to poor performance and fetching of
unnecessary data. But this is especially clear in the case of many-to-many associations. We don’t much employ the word
"never" when it comes to object/relational mappings, but here we will: never write @anyToMany (fetch=EAGER) unless

you’re deliberately looking for trouble.

3.21. Collections of basic values and embeddable objects

We’ve now seen the following kinds of entity attribute:

Kind of entity attribute Kind of reference Multiplicity
Single-valued attribute of basic type Non-entity At most one
Single-valued attribute of embeddable type Non-entity At most one
Single-valued association Entity At most one
Many-valued association Entity Zero or more

Examples

@asic String name

@Embedded Name name

@ManyToOne Publisher publisher
@OneToOne Person person

@neToMany Set<Book> books
@ManyToMany Set<Author> authors

Scanning this taxonomy, you might ask: does Hibernate have multivalued attributes of basic or embeddable type?

Well, actually, we’ve already seen that it does, at least in two special cases. So first, lets recall that JPA treats byte[] and char[] arrays as
basic types. Hibernate persists a byte[] or char[] array to a VARBINARY or VARCHAR column, respectively.

But in this section we’re really concerned with cases other than these two special cases. So then, apart from byte[1 and char[], does

Hibernate have multivalued attributes of basic or embeddable type?

And the answer again is that it does. Indeed, there are two different ways to handle such a collection, by mapping it:

* to a column of SQL ARRAY type (assuming the database has an ARRAY type), or

41

« to a separate table.

So we may expand our taxonomy with:

Kind of entity attribute Kind of reference Multiplicity Examples

byte[]and char[]arrays Non-entity Zero or more byte[] image
char[] text

Collection of basic-typed elements Non-entity Zero or more @Array String[] names
@ElementCollection Set<String> names

Collection of embeddable elements Non-entity Zero or more @ElementCollection Set<Name> names

There’s actually two new kinds of mapping here: @Array mappings, and @ElementCollection mappings.

These sorts of mappings are overused.

There are situations where we think it’s appropriate to use a collection of basic-typed values in our entity class. But such
situations are rare. Almost every many-valued relationship should map to a foreign key association between separate
tables. And almost every table should be mapped by an entity class.

The features we’re about to meet in the next two subsections are used much more often by beginners than they’re used
by experts. So if you’re a beginner, you'll save yourself same hassle by staying away from these features for now.

We’ll talk about @Array mappings first.

3.22. Collections mapped to SQL arrays

Let’s consider a calendar event which repeats on certain days of the week. We might represent this in our Event entity as an attribute of type
DayOfWeek[] or List<DayOfWeek>. Since the number of elements of this array or list is upper bounded by 7, this is a reasonable case for the
use of an ARRAY-typed column. It’s hard to see much value in storing this collection in a separate table.

Learning to not hate SQL arrays

For a long time, we thought arrays were a kind of weird and warty thing to add to the relational model, but recently we’ve come to
realize that this view was overly closed-minded. Indeed, we might choose to view SQL ARRAY types as a generalization of VARCHAR and
VARBINARY to generic "element" types. And from this point of view, SQL arrays look quite attractive, at least for certain problems. If
we’re comfortable mapping byte[] to VARBINARY (255), why would we shy away from mapping DayOfWeek [] to TINYINT ARRAY[71?

Unfortunately, JPA doesn’t define a standard way to map SQL arrays, but here’s how we can do it in Hibernate:

@Entity

class Event {
@Id @GeneratedValue
Long id;

@Array(length=7)
DayOfWeek[] daysOfWeek; // stored as a SQL ARRAY type

The @Array annotation is optional—it lets us specify an upper bound on the length of the ARRAY column. By writing @Array(length=7) here,
we specified that DDL should be generated with the column type TINYINT ARRAY[7].

Just for fun, we used an enumerated type in the code above, but the array element time may be almost any basic type. For example, the
Java array types String[], UUID[], double[], BigDecimal[], LocalDate[], and Of fsetDateTime[] are all allowed, mapping to the SQL types
VARCHAR(n) ARRAY, UUID ARRAY, FLOAT(53) ARRAY,NUMERIC(p,s) ARRAY,DATE ARRAY,and TIMESTAMP(p) WITH TIME ZONE ARRAY, respectively

Now for the gotcha: not every database has a SQL ARRAY type, and some that do have an ARRAY type don’t allow it to be

used as a column type.

A In particular, neither DB2 nor SQL Server have array-typed columns. On these databases, Hibernate falls back to
something much worse: it uses Java serialization to encode the array to a binary representation, and stores the binary
stream in a VARBINARY column. Quite clearly, this is terrible. You can ask Hibernate to do something slightly less terrible by

42

annotating the attribute @JdbcTypeCode (SqlTypes. JSON), so that the array is serialized to JSON instead of binary format.
But at this point it’s better to just admit defeat and use an @ElementCollection instead.

Alternatively, we could store this array or list in a separate table.

3.23. Collections mapped to a separate table
JPA does define a standard way to map a collection to an auxiliary table: the @ElementCollection annotation.

@Entity

class Event {
@Id @GeneratedValue
Long id;

@ElementCollection
DayOfWeek[] daysOfWeek; // stored in a dedicated table

Actually, we shouldn’t use an array here, since array types can’t be proxied, and so the JPA specification doesn’t even say they’re
supported. Instead, we should use Set, List, or Map.

@Entity

class Event {
@Id @GeneratedValue
Long id;

@ElementCollection
List<DayOfWeek> daysOfWeek; // stored in a dedicated table

Here, each collection element is stored as a separate row of the auxiliary table. By default, this table has the following definition:

create table Event_daysOfWeek (
Event_id bigint not null,
daysOfWeek tinyint check (daysOfWeek between 0 and 6),
daysOfWeek_ORDER integer not null,
primary key (Event_id, daysOfWeek_ORDER)

Which is fine, but it’s still a mapping we prefer to avoid.

@ElementCollection is one of our least-favorite features of JPA. Even the name of the annotation is bad.
The code above results in a table with three columns:
« aforeign key of the Event table,
* a TINYINT encoding the enum, and
A * an INTEGER encoding the ordering of elements in the array.
Instead of a surrogate primary key, it has a composite key comprising the foreign key of Event and the order column.

When—inevitably—we find that we need to add a fourth column to that table, our Java code must change completely.
Most likely, we’ll realize that we need to add a separate entity after all. So this mappingisn’t very robust in the face of
minor changes to our data model.

There’s much more we could say about "element collections", but we won’t say it, because we don’t want to hand you the gun you’ll shoot
your foot with.

3.24. Summary of annotations

Let’s pause to remember the annotations we’ve met so far.

43

Annotation

@Entity

@MappedSuperclass

@Embeddable

@IdClass

Annotation

@Id

@Version

@Basic

@EmbeddedId

@Embedded

@Enumerated

@Array

@ElementCollection

Annotation

@Converter

@Convert

@JavaType

@JdbcType

@JdbcTypeCode

@JavaTypeRegistration

@JdbcTypeRegistration

Annotation

@GeneratedValue

@SequenceGenerator

@TableGenerator

@IdGeneratorType

44

Table 3.8: Declaring entities and embeddable types

Purpose

Declare an entity class

Declare a non-entity class with mapped attributes inherited by an entity
Declare an embeddable type

Declare the identifier class for an entity with multiple eId attributes

Table 3.9: Declaring basic and embedded attributes

Purpose

Declare a basic-typed identifier attribute

Declare a version attribute

Declare a basic attribute

Declare an embeddable-typed identifier attribute

Declare an embeddable-typed attribute

Declare an enum-typed attribute and specify how it is encoded

Declare that an attribute maps to a SQL ARRAY, and specify the length

Declare that a collection is mapped to a dedicated table

Table 3.10: Converters and compositional basic types

Purpose

Register an AttributeConverter

Apply a converter to an attribute

Explicitly specify an implementation of JavaType for a basic attribute

Explicitly specify an implementation of JdbcType for a basic attribute

Default

Inferred

Inferred

Inferred

Explicitly specify a JDBC type code used to determine the JdbcType for a basic attribute

Register a JavaType for a given Java type

Register a JdbcType for a given JDBC type code

Table 3.11: System-generated identifiers

Purpose

Specify that an identifier is system-generated
Define an id generator backed by a database sequence
Define an id generated backed by a database table

Declare an annotation that associates a custom Generator with each @Id attribute it
annotates

JPA-standard

v
v
v
v

JPA-standard

v

S X X < < <

JPA-standard

v

X X X X X

JPA-standard

v

v
v
X

Annotation Purpose JPA-standard

@ValueGenerationType Declare an annotation that associates a custom Generator with each @Basic attribute it b 4
annotates

Table 3.12: Declaring entity associations

Annotation Purpose JPA-standard
@ManyToOne Declare the single-valued side of a many-to-one association (the owning side) V4
@0oneToMany Declare the many-valued side of a many-to-one association (the unowned side) 4
@ManyToMany Declare either side of a many-to-many association V4
@0OneToOne Declare either side of a one-to-one association 4
@MapsId Declare that the owning side of a @oneToOne association maps the primary key column v

Phew! That’s already a lot of annotations, and we have not even started with the annotations for O/R mapping!

3.25. equals() and hashCode()

Entity classes should override equals() and hashCode (), especially when associations are represented as sets.

People new to Hibernate or JPA are often confused by exactly which fields should be included in the hashCode (). And people with more
experience often argue quite religiously that one or another approach is the only right way. The truth is, there’s no unique right way to do it,
but there are some constraints. So please keep the following principles in mind:

+ You should not include a mutable field in the hashcode, since that would require rehashing every collection containing the entity
whenever the field is mutated.

« It’s not completely wrong to include a generated identifier (surrogate key) in the hashcode, but since the identifier is not generated until
the entity instance is made persistent, you must take great care to not add it to any hashed collection before the identifier is generated.
We therefore advise against including any database-generated field in the hashcode.

It’s OK to include any immutable, non-generated field in the hashcode.

We therefore recommend identifying a natural key for each entity, that is, a combination of fields that uniquely identifies
an instance of the entity, from the perspective of the data model of the program. The natural key should correspond to a
unique constraint on the database, and to the fields which are included in equals() and hashCode ().

In this example, the equals() and hashCode () methods agree with the @Naturalld annotation:

@Entity
class Book {

@Id @GeneratedValue
Long id;

@Naturalld
@Basic(optional=false)
String isbn;

String getIsbn() {
return isbn;

}
@Override
public boolean equals(Object other) {
return other instanceof Book // check type with instanceof, not getClass()
&& ((Book) other).getIsbn().equals(isbn); // compare natural ids
}
@Override

45

public int hashCode() {
return isbn.hashCode(); // hashcode based on the natural id

}

That said, an implementation of equals() and hashCode() based on the generated identifier of the entity can work if you’re careful.

might be a proxy. Therefore, you should use instanceof, not getClass() to check the type of the argument, and should

: Your implementation of equals() must be written to accommodate the possibility that the object passed to the equals()
access fields of the passed entity via its accessor methods.

46

Chapter 4. Object/relational mapping

Given a domain model—that is, a collection of entity classes decorated with all the fancy annotations we just met in the previous
chapter—Hibernate will happily go away and infer a complete relational schema, and even export it to your database if you ask politely.

The resulting schema will be entirely sane and reasonable, though if you look closely, you’ll find some flaws. For example, by default, every

VARCHAR column will have the same length, VARCHAR(255).

But the process | just described—which we call top down mapping—simply doesn’t fit the most common scenario for the use of O/R
mapping. It’s only rarely that the Java classes precede the relational schema. Usually, we already have a relational schema, and we’re
constructing our domain model around the schema. This is called bottom up mapping.

Developers often refer to a pre-existing relational database as "legacy" data. This tends to conjure images of bad old
"legacy apps" written in COBOL or something. But legacy data is valuable, and learning to work with it is important.

Especially when mapping bottom up, we often need to customize the inferred object/relational mappings. This is a somewhat tedious
topic, and so we don’t want to spend too many words on it. Instead, we’ll quickly skim the most important mapping annotations.

Hibernate SQL case convention

Computers have had lowercase letters for rather a long time now. Most developers learned long ago that text written in MixedCase,
camelCase, or even snake_case is easier to read than text written in SHOUTYCASE. This is just as true of SQL as it is of any other
language.

Therefore, for over twenty years, the convention on the Hibernate project has been that:

* query language identifiers are written in lowercase,
* table names are written in MixedCase, and

+ column names are written in camelCase.
That is to say, we simply adopted Java’s excellent conventions and applied them to SQL.

Now, there’s no way we can force you to follow this convention, even if we wished to. Hell, you can easily write a
PhysicalNamingStrategy which makes table and column names ALL UGLY AND SHOUTY LIKE THIS IF YOU PREFER. But, by default, it’s
the convention Hibernate follows, and it’s frankly a pretty reasonable one.

4.1. Mapping entity inheritance hierarchies

In Entity class inheritance we saw that entity classes may exist within an inheritance hierarchy. There’s three basic strategies for mapping

an entity hierarchy to relational tables. Let’s put them in a table, so we can more easily compare the points of difference between them.

Table 4.1: Entity inheritance mapping strategies

Strategy Polymorphic Constraints Normalization When to use it

queries

Mapping

SINGLE_TABLE

Map every classin
the hierarchy to the
same table, and uses
the value of a
discriminator column
to determine which
concrete class each
row represents.

To retrieve instances
of a given class, we
only need to query
the one table.

Attributes declared
by subclasses map to
columns without NOT
NULL constraints, and
so their non-
nullability is enforced
via a CHECK
constraint.

Any association may
have a FOREIGN KEY

constraint.

Subclass data is
denormalized.

Works well when
subclasses declare
few or no additional
attributes.

47

Strategy

JOINED

TABLE_PER_CLASS

Mapping

Map every classin
the hierarchy to a
separate table, but
each table only maps
the attributes
declared by the class
itself.

Optionally, a
discriminator column
may be used.

Map every concrete
class in the hierarchy
to a separate table,
but denormalize all
inherited attributes
into the table.

Polymorphic
queries

To retrieve instances
of a given class, we
must JOIN the table
mapped by the class
with:

« alltables
mapped by its
superclasses and

« alltables
mapped by its
subclasses.

To retrieve instances
of a given class, we
must take a UNION
over the table
mapped by the class
and the tables
mapped by its
subclasses.

Constraints

Any attribute may
map to a column
with aNOT NULL

constraint. &

Any association may
have a FOREIGN KEY

constraint.

Associations
targeting a
superclass cannot
have a
corresponding
FOREIGN KEY
constraintin the
database. @ &

Any attribute may
map to a column
with a NOT NULL

constraint.

Normalization

The tables are
normalized.

Superclass data is
denormalized.

When to use it

The best option
when we care a lot
about constraints
and normalization.

Not very popular.

From a certain point
of view, competes
with
@MappedSuperclass

The three mapping strategies are enumerated by InheritanceType. We specify an inheritance mapping strategy using the @Inheritance

annotation.

For mappings with a discriminator column, we should:

« specify the discriminator column name and type by annotating the root entity @iscriminatorColumn, and

« specify the values of this discriminator by annotating each entity in the hierarchy @discriminatorvalue.

For single table inheritance we always need a discriminator:

@Entity

@iscriminatorColumn(discriminatorType=CHAR, name="kind")

@iscriminatorValue('P"')
class Person { ... }

@Entity

@iscriminatorValue('A")
class Author { ... }

We don’t need to explicitly specify @Inheritance(strategy=SINGLE_TABLE), since that’s the default.

For JOINED inheritance we don’t need a discriminator:

@Entity
@Inheritance(strategy=JOINED)
class Person { ... }

@Entity

class Author { ... }

However, we can add a discriminator column if we like, and in that case the generated SQL for polymorphic queries will
be slightly simpler.

Similarly, for TABLE_PER_CLASS inheritance we have:

@Entity

@Inheritance(strategy=TABLE_PER_CLASS)

48

class Person { ... }

@Entity

class Author { ... }
Hibernate doesn’t allow discriminator columns for TABLE_PER_CLASS inheritance mappings, since they would make no
sense, and offer no advantage.

Notice that in this last case, a polymorphic association like:

@ManyToOne Person person;

is a bad idea, since it’s impossible to create a foreign key constraint that targets both mapped tables.

It’s quite easy to overuse inheritance. We’ve occasionally seen extreme cases where a JOINED inheritance hierarchy
includes hundreds of entities, spanning hundreds of tables. Efficiently querying such a hierarchy is an almost impossible

é task for Hibernate. Fortunately, a JOINED inheritance relationship can always be remodeled as a one-to-one association,
allowing much more efficient queries. In general, a single entity inheritance hierarchy should never span more than a few
tables, including secondary tables.

4.2. Mapping to tables

The following annotations specify exactly how elements of the domain model map to tables of the relational model:

Table 4.2: Annotations for mapping tables

Annotation Purpose

@Table Map an entity class to its primary table

@SecondaryTable Define a secondary table for an entity class

@JoinTable Map a many-to-many or many-to-one association to its association table
@CollectionTable Map an @ElementCollection to its table

The first two annotations are used to map an entity to its primary table and, optionally, one or more secondary tables.

4.3. Mapping entities to tables
By default, an entity maps to a single table, which may be specified using @Table:

@Entity
@Table(name="People")
class Person { ... }

However, the @SecondaryTable annotation allows us to spread its attributes across multiple secondary tables.

@Entity

@Table(name="Books")
@SecondaryTable(name="Editions")
class Book { ... }

The @Table annotation can do more than just specify a name:

Table 4.3: @Table annotation members

Annotation member Purpose
name The name of the mapped table
schema @ The schema to which the table belongs

49

Annotation member Purpose

catalog @ The catalog to which the table belongs

uniqueConstraints One or more @UniqueConstraint annotations declaring multi-column unique constraints
indexes One or more @Index annotations each declaring an index

check One or more @CheckConstraint annotations declaring multi-column check constraints
comment A DDL comment

It only makes sense to explicitly specify the schema in annotations if the domain model is spread across multiple schemas.
Otherwise, it’s a bad idea to hardcode the schema (or catalog) in a @Table annotation. Instead:

+ set the configuration property hibernate.default_schema (or hibernate.default_catalog), or

« simply specify the schema in the JDBC connection URL.

The @SecondaryTable annotation is even more interesting:

Table 4.4: @SecondaryTable annotation members

Annotation member Purpose

name The name of the mapped table

schema @ The schema to which the table belongs

catalog @ The catalog to which the table belongs

uniqueConstraints One or more @UniqueConstraint annotations declaring multi-column unique constraints

indexes One or more @Index annotations each declaring an index

pkJoinColumns One or more @PrimaryKeyJoinColumn annotations, specifying primary key column mappings

foreignKey A @ForeignKey annotation specifying the name of the FOREIGN KEY constraint on the @PrimaryKeyJoinColumns
check One or more @CheckConstraint annotations declaring multi-column check constraints

comment ADDL comment

Using @SecondaryTable on a subclass in a SINGLE_TABLE entity inheritance hierarchy gives us a sort of mix of SINGLE_TABLE
with JOINED inheritance.

4.4. Mapping associations to tables

The @JoinTable annotation specifies an association table, that is, a table holding foreign keys of both associated entities. This annotation is
usually used with @anyToMany associations:

@Entity
class Book {

@ManyToMany
@JoinTable(name="BooksAuthors")
Set<Author> authors;

But it’s even possible to use it to map a @anyToOne or @neToOne association to an association table.

50

@Entity
class Book {

@ManyToOne(fetch=LAZY)
@JoinTable(name="BookPublisher")
Publisher publisher;

Here, there should be a UNIQUE constraint on one of the columns of the association table.

@Entity
class Author {

@oneToOne(optional=false, fetch=LAZY)
@JoinTable(name="AuthorPerson")

Person author;

Here, there should be a UNIQUE constraint on both columns of the association table.

Annotation member
name

schema @

catalog @
uniqueConstraints
indexes
joinColumns
inverseJoinColumns
foreignKey
inverseForeignKey
check

comment

Table 4.5: @JoinTable annotation members

Purpose

The name of the mapped association table

The schema to which the table belongs

The catalog to which the table belongs

One or more @UniqueConstraint annotations declaring multi-column unique constraints

One or more @Index annotations each declaring an index

One or more @JoinColumn annotations, specifying foreign key column mappings to the table of the owning side
One or more @JoinColumn annotations, specifying foreign key column mappings to the table of the unowned side
A @ForeignKey annotation specifying the name of the FOREIGN KEY constraint on the joinColumnss

A @ForeignKey annotation specifying the name of the FOREIGN KEY constraint on the inverseJoinColumnss

One or more @CheckConstraint annotations declaring multi-column check constraints

ADDL comment

To better understand these annotations, we must first discuss column mappings in general.

4.5, Mapping to columns

These annotations specify how elements of the domain model map to columns of tables in the relational model:

Annotation

@Column

@JoinColumn

Table 4.6: Annotations for mapping columns
Purpose
Map an attribute to a column

Map an association to a foreign key column

51

Annotation Purpose

@PrimaryKeyJoinColumn Map the primary key used to join a secondary table with its primary, or a subclass table in JOINED inheritance
with its root class table

@0orderColumn Specifies a column that should be used to maintain the order of a List.
@MapKeyColumn Specified a column that should be used to persist the keys of a Map.
We’ll come back to the last two annotations much later, in Ordered and sorted collections and map keys.
We use the @Column annotation to map basic attributes.
4.6. Mapping basic attributes to columns

The @Column annotation is not only useful for specifying the column name.

Table 4.7: @Column annotation members

Annotation member Purpose

name The name of the mapped column

table The name of the table to which this column belongs

length The length of a VARCHAR, CHAR, or VARBINARY column type

precision The decimal digits of precision of a FLOAT, DECIMAL, or NUMERIC type

scale The scale of a DECIMAL or NUMERIC column type, the digits of precision that occur to the right of the decimal point

secondPrecision The digits of precision occurring to the right of the decimal point in the seconds field of a TIME, or TIMESTAMP column
type

unique Whether the column has a UNIQUE constraint

nullable Whether the column has a NOT NULL constraint

insertable Whether the column should appear in generated SQL INSERT statements

updatable Whether the column should appear in generated SQL UPDATE statements

columnDefinition @ A DDL fragment that should be used to declare the column

check One or more @heckConstraint annotations declaring single-column check constraints

comment A DDL comment

We no longer recommend the use of columnDefinition since it results in unportable DDL. Hibernate has much better
ways to customize the generated DDL using techniques that result in portable behavior across different databases.

Here we see four different ways to use the @Column annotation:

@Entity
@Table(name="Books")
@SecondaryTable(name="Editions")
class Book {
@Id @GeneratedValue
@Column(name="bookId") // customize column name
Long id;

@Column(length=100, nullable=false) // declare column as VARCHAR(100) NOT NULL
String title;

@Column(length=17, unique=true, nullable=false) // declare column as VARCHAR(17) NOT NULL UNIQUE

52

String isbn;

@Column(table="Editions", updatable=false) // column belongs to the secondary table, and is never updated
int edition;

We don’t use @Column to map associations.

4.7. Mapping associations to foreign key columns

The @JoinColumn annotation is used to customize a foreign key column.

Table 4.8: @ToinColumn annotation members

Annotation member Purpose

name The name of the mapped foreign key column

table The name of the table to which this column belongs

referencedColumnName The name of the column to which the mapped foreign key column refers
unique Whether the column has a UNIQUE constraint

nullable Whether the column has a NOT NULL constraint

insertable Whether the column should appear in generated SQL INSERT statements
updatable Whether the column should appear in generated SQL UPDATE statements
columnDefinition & A DDL fragment that should be used to declare the column

foreignKey A @ForeignKey annotation specifying the name of the FOREIGN KEY constraint
check One or more @CheckConstraint annotations declaring single-column check constraints
comment A DDL comment

Aforeign key column doesn’t necessarily have to refer to the primary key of the referenced table. It’s quite acceptable for the foreign key to
refer to any other unique key of the referenced entity, even to a unique key of a secondary table.

Here we see how to use @JoinColumn to define a @anyToOne association mapping a foreign key column which refers to the @NaturalId of
Book:

@Entity
@Table(name="Items")
class Item {

@anyToOne(optional=false) // implies nullable=false

@JoinColumn(name = "bookIsbn", referencedColumnName = "isbn", // a reference to a non-PK column
foreignKey = @ForeignKey(name="ItemsToBooksBySsn")) // supply a name for the FK constraint

Book book;

In case this is confusing:

* bookIsbn is the name of the foreign key column in the Itenms table,
« it refers to a unique key isbn in the Books table, and
* it has a foreign key constraint named ItemsToBooksBySsn.

Note that the foreignKey member is completely optional and only affects DDL generation.

If you don’t supply an explicit name using @ForeignKey, Hibernate will generate a quite ugly name. The reason for this is

53

that the maximum length of foreign key names on some databases is extremely constrained, and we need to avoid
collisions. To be fair, this is perfectly fine if you’re only using the generated DDL for testing. You can customize the
generated constraint names by writing your own ImplicitNamingStrategy.

For composite foreign keys we might have multiple @JoinColumn annotations:

@Entity
@Table(name="Items")
class Item {

@anyToOne (optional=false)

@JoinColumn(name = "bookIsbn", referencedColumnName = "isbn")
@JoinColumn(name = "bookPrinting", referencedColumnName = "printing")
Book book;

If we need to specify the @ForeignKey, this starts to get a bit messy:

@Entity
@Table(name="Items")
class Item {

@ManyToOne(optional=false)
@JoinColumns(value = {@JoinColumn(name = "bookIsbn", referencedColumnName = "isbn"),
@JoinColumn(name = "bookPrinting", referencedColumnName = "printing")},
foreignKey = @ForeignKey(name="ItemsToBooksBySsn"))
Book book;

For associations mapped to a @JoinTable, fetching the association requires two joins, and so we must declare the @JoinColumns inside the
@JoinTable annotation:

@Entity

class Book {
@Id @GeneratedValue
Long id;

@ManyToMany
@JoinTable(joinColumns=@JoinColumn(name="bookId"),
inverseJoinColumns=@joinColumn(name="authorId"),
foreignKey=@ForeignKey(name="BooksToAuthors"))
Set<Author> authors;

Again, the foreignKey member is optional.

For mapping a @neToOne association to a primary key with @MapsId, Hibernate lets us use either @ oinColumn or
@PrimaryKeyJoinColumn

@Entity

class Author {
@Id
Long id;

@oneToOne(optional=false, fetch=LAZY)
@MapsId
@PrimaryKeyJoinColumn(name="personId")
Person author;

54

Arguably, the use of @PrimaryKeyJoinColumn is clearer.

4.8. Mapping primary key joins between tables

The @PrimaryKeyJoinColumn is a special-purpose annotation for mapping:

* the primary key column of a @SecondaryTable—which is also a foreign key referencing the primary table, or

+ the primary key column of the primary table mapped by a subclass in a JOINED inheritance hierarchy—which is also a foreign key
referencing the primary table mapped by the root entity.

Table 4.9: @PrimaryKeyJoinColumn annotation members

Annotation member Purpose

name The name of the mapped foreign key column

referencedColumnName The name of the column to which the mapped foreign key column refers
columnDefinition & A DDL fragment that should be used to declare the column

foreignKey A @ForeignKey annotation specifying the name of the FOREIGN KEY constraint

When mapping a subclass table primary key, we place the @PrimaryKeyJoinColumn annotation on the entity class:

@Entity

@Table(name="People")
@Inheritance(strategy=JOINED)
class Person { ... }

@Entity

@Table(name="Authors")

@PrimaryKeyJoinColumn(name="personId") // the primary key of the Authors table
class Author { ... }

But to map a secondary table primary key, the @PrimaryKeyJoinColumn annotation must occur inside the @SecondaryTable annotation:

@Entity
@Table(name="Books")
@SecondaryTable(name="Editions",
pkJoinColumns = @PrimaryKeyJoinColumn(name="bookId")) // the primary key of the Editions table

class Book {

@Id @GeneratedValue

@Column(name="bookId") // the name of the primary key of the Books table

Long id;

4.9. Column lengths and adaptive column types

Hibernate automatically adjusts the column type used in generated DDL based on the column length specified by the @olumn annotation.
So we don’t usually need to explicitly specify that a column should be of type TEXT or CLOB—or worry about the parade of TINYTEXT,
MEDIUMTEXT, TEXT, LONGTEXT types on MySQL—because Hibernate automatically selects one of those types if required to accommodate a
string of the length we specify.

The constant values defined in the class Length are very helpful here:

Table 4.10: Predefined column lengths

Constant Value Description

DEFAULT 255 The default length of a VARCHAR or VARBINARY column when none is explicitly specified

55

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/Length.html

Constant Value Description
LONG 32600 The largest column length for a VARCHAR or VARBINARY that is allowed on every database Hibernate supports

LONG16 32767 The maximum length that can be represented using 16 bits (but this length is too large for a VARCHAR or VARBINARY
column on for some database)

LONG32 2147483647 The maximum length for a Java string

We can use these constants in the @Column annotation:

@Column(length=LONG)
String text;

@Column(length=LONG32)
byte[] binaryData;

This is usually all you need to do to make use of large object types in Hibernate.

4.10.LOBs

JPA provides a @Lob annotation which specifies that a field should be persisted as a BLOB or CLOB.

Semantics of the @Lob annotation

What the spec actually says is that the field should be persisted

...as a large object to a database-supported large object type.

It’s quite unclear what this means, and the spec goes on to say that

...the treatment of the Lob annotation is provider-dependent...

which doesn’t help much.

Hibernate interprets this annotation in what we think is the most reasonable way. In Hibernate, an attribute annotated @Lob will be written
to JDBC using the setClob() or setBlob() method of PreparedStatement, and will be read from JDBC using the getClob() or getBlob()
method of ResultSet.

Now, the use of these JDBC methods is usually unnecessary! JDBC drivers are perfectly capable of converting between String and CLOB or
between byte[] and BLOB. So unless you specifically need to use these JDBC LOB APIs, you don’t need the @Lob annotation.

Instead, as we just saw in Column lengths and adaptive column types, all you need is to specify a large enough column length to
accommodate the data you plan to write to that column.

You should usually write this:

@Column(length=LONG32) // good, correct column type inferred
String text;

instead of this:

@Lob // almost always unnecessary
String text;

This is particularly true for PostgreSQL.

56

Unfortunately, the driver for PostgreSQL doesn’t allow BYTEA or TEXT columns to be read via the JDBC LOB APIs.

This limitation of the Postgres driver has resulted in a whole cottage industry of bloggers and stackoverflow question-
answerers recommending convoluted ways to hack the Hibernate Dialect for Postgres to allow an attribute annotated
@Lob to be written using setString() and read using getString().

A But simply removing the @Lob annotation has exactly the same effect.
Conclusion:

* on PostgreSQL, @Lob always means the 0ID type,
* @Lob should never be used to map columns of type BYTEA or TEXT, and
« please don’t believe everything you read on stackoverflow.

Finally, as an alternative, Hibernate lets you declare an attribute of type java.sqgl.Blob or java.sql.Clob.

@Entity
class Book {

Clob text;
Blob coverArt;

The advantage is that a java.sql.Clob or java.sql.Blob can in principle index up to 2% characters or bytes, much more data than you can
fitin a Java String or byte[] array (or in your computer).

To assign a value to these fields, we’ll need to use a LobHelper. We can get one from the Session:
LobHelper helper = session.getlLobHelper();

book.text = helper.createClob(text);
book.coverArt = helper.createBlob(image);

In principle, the Blob and Clob objects provide efficient ways to read or stream LOB data from the server.
Book book = session.find(Book.class, bookId);

String text = book.text.getSubString(1, textLength);
InputStream bytes = book.coverArt.getBinaryStream();

Of course, the behavior here depends very much on the JDBC driver, and so we really can’t promise that this is a sensible thing to do on
your database.

4.11. Mapping embeddable types to UDTs or to JSON
There’s a couple of alternative ways to represent an embeddable type on the database side.
Embeddables as UDTs
First, a really nice option, at least in the case of Java record types, and for databases which support user-defined types (UDTs), is to define a
UDT which represents the record type. Hibernate 6 makes this really easy. Just annotate the record type, or the attribute which holds a
reference to it, with the new @Struct annotation:

Q@Embeddable

@Struct(name="PersonName")
record Name(String firstName, String middleName, String lastName) {}

@Entity
class Person {

Name name;
This results in the following UDT:

57

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/LobHelper.html

create type PersonName as (firstName varchar(255), middleName varchar(255), lastName varchar(255))

And the name column of the Author table will have the type PersonName.

Embeddables to JSON

A second option that’s available is to map the embeddable type to a JSON (or JSONB) column. Now, this isn’t something we would exactly
recommend if you’re defining a data model from scratch, but it’s at least useful for mapping pre-existing tables with JSON-typed columns.

Since embeddable types are nestable, we can map some JSON formats this way, and even query JSON properties using HQL.

6 At this time, JSON arrays are not supported!

To map an attribute of embeddable type to JSON, we must annotate the attribute @JdbcTypeCode(SqlTypes.JSON), instead of annotating
the embeddable type. But the embeddable type Name should still be annotated @Embeddable if we want to query its attributes using HQL.

@Embeddable
record Name(String firstName, String middleName, String lastName) {}

@Entity
class Person {

@JdbcTypeCode(SqlTypes. JSON)
Name name;

We also need to add Jackson or an implementation of JSONB—for example, Yasson—to our runtime classpath. To use Jackson 2 we could
add this line to our Gradle build:

runtimeOnly 'com.fasterxml.jackson.core:jackson-databind:{jacksonVersion}'
To use Jackson 3 we could add this line to our Gradle build:

runtimeOnly 'tools.jackson.core:jackson-databind:{jackson3Version}'

Now the name column of the Author table will have the type jsonb, and Hibernate will automatically use Jackson to serialize a Name to and
from JSON format.

4.12. Summary of SQL column type mappings

So, as we’ve seen, there are quite a few annotations that affect the mapping of Java types to SQL column types in DDL. Here we summarize
the ones we’ve just seen in the second half of this chapter, along with some we already mentioned in earlier chapters.

Table 4.11: Annotations for mapping SQL column types

Annotation Interpretation

@Enumerated, @numeratedValue Specify how an enum type should be persisted

@Nationalized Use a nationalized character type: NCHAR, NVARCHAR, or NCLOB
@Lob @ Use JDBC LOB APIs to read and write the annotated attribute
@Array Map a collection to a SQL ARRAY type of the specified length
@Struct Map an embeddable to a SQL UDT with the given name
@TimeZoneStorage Specify how the time zone information should be persisted
@JdbcType or @JdbcTypeCode Use an implementation of JdbcType to map an arbitrary SQL type
@Collate Specify a collation for a column

58

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/TimeZoneStorageType.html

In addition, there are some configuration properties which have a global effect on how basic types map to SQL column types:

Configuration property name

hibernate.

hibernate.

hibernate.

hibernate

hibernate.

hibernate.

hibernate

use_nationalized_character_data

type.preferred_boolean_jdbc_type

type.preferred_uuid_jdbc_type

.type.preferred_duration_jdbc_type

type.preferred_instant_jdbc_type

timezone.default_storage

.type.prefer_native_enum_types

Table 4.12: Type mapping settings

Purpose

Enable use of nationalized character types by default

Specify the default SQL column type for storing a boolean
Specify the default SQL column type for storing a UUID
Specify the default SQL column type for storing a Duration
Specify the default SQL column type for storing an Instant
Specify the default strategy for storing time zone information

Use named enum types on PostgreSQL and Oracle

Earlier, we saw how to use these settings to control the default mappings for Instant and Duration.

These are global settings and thus quite clumsy. We recommend against messing with any of these settings unless you

have a really good reason for it.

There’s one more topic we would like to cover in this chapter.

4.13. Mapping to formulas

Hibernate lets us map an attribute of an entity to a SQL formula involving columns of the mapped table. Thus, the attribute is a sort of
"derived" value.

Annotation

@Formula

@JoinFormula

@iscriminatorFormula

For example:

@Entity
class Order {

Table 4.13: Annotations for mapping formulas

Purpose
Map an attribute to a SQL formula
Map an association to a SQL formula

Use a SQL formula as the discriminator in single table inheritance.

@Column(name = "sub_total", scale=2, precision=8)
BigDecimal subTotal;

@Column(name = "tax", scale=4, precision=4)
BigDecimal taxRate;

@Formula("sub_total * (1.0 + tax)")
BigDecimal totalWithTax;

The formula is evaluated every time the entity is read from the database.

4.14. Derived Identity

An entity has a derived identity if it inherits part of its primary key from an associated "parent" entity. We’ve already met a kind of
degenerate case of derived identity when we talked about one-to-one associations with a shared primary key.

But a @anyToOne association may also form part of a derived identity. That is to say, there could be a foreign key column or columns

59

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/MappingSettings.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/TimeZoneStorageType.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/Formula.html

included as part of the composite primary key. There’s three different ways to represent this situation on the Java side of things:

* using @IdClass without @MapsId,
¢ using @IdClass with @MapsId, or
* using @EmbeddedId with @MapsId.

Let’s suppose we have a Parent entity class defined as follows:

@Entity

class Parent {
@Id
Long parentId;

The parentld field holds the primary key of the Parent table, which will also form part of the composite primary key of every Child
belonging to the Parent.

First way
In the first, slightly simpler approach, we define an @IdClass to represent the primary key of Child:

class DerivedId {
Long parent;
String childId;

// constructors, equals, hashcode, etc

And a Child entity class with a @anyToOne association annotated @Id:

@Entity
@IdClass(DerivedId.class)
class Child {

@Id

String childId;

@Id @ManyToOne
@JoinColumn(name="parentId")
Parent parent;

Then the primary key of the Child table comprises the columns (childld,parentId).
Second way
This is fine, but sometimes it’s nice to have a field for each element of the primary key. We may use the @MapsId annotation we met earlier:

@Entity
@IdClass(DerivedId.class)
class Child {

@Id

Long parentId;

@Id

String childId;

@ManyToOne

@MapsId(Child_.PARENT_ID) // typesafe reference to Child.parentId
@JoinColumn(name="parentId")

Parent parent;

60

We’re using the approach we saw previously to refer to the parentId property of Child in a typesafe way.
Note that we must place column mapping information on the association annotated @MapsId, not on the eId field.

We must slightly modify our @IdClass so that field names align:

class DerivedId {
Long parentld;
String childId;

// constructors, equals, hashcode, etc

Third way

The third alternative is to redefine our @IdClass as an @Embeddable. We don’t actually need to change the DerivedId class, but we do need to
add the annotation.

@Embeddable

class DerivedId {
Long parentId;
String childId;

// constructors, equals, hashcode, etc

Then we may use @EmbeddedId in Child:

@Entity

class Child {
@EmbeddedId
DerivedId id;

@ManyToOne

@MapsId(DerivedId_.PARENT_ID) // typesafe reference to DerivedId.parentId
@JoinColumn(name="parentId")

Parent parent;

The choice between @IdClass and @EmbeddedId boils down to taste. The @EmbeddedId is perhaps a little DRYer.

4.15. Adding constraints

Database constraints are important. Even if you’re sure that your program has no bugs (3, it’s probably not the only program with access
to the database. Constraints help ensure that different programs (and human administrators) play nicely with each other.

Hibernate adds certain constraints to generated DDL automatically: primary key constraints, foreign key constraints, and some unique
constraints. But it’s common to need to:

« add additional unique constraints,
« add check constraints, or
« customize the name of a foreign key constraint.

We’ve already seen how to use @ForeignKey to specify the name of a foreign key constraint.
There are two ways to add a unique constraint to a table:

* using @Column(unique=true) to indicate a single-column unique key, or
* using the @UniqueConstraint annotation to define a uniqueness constraint on a combination of columns.

@Entity
@Table(uniqueConstraints=@UniqueConstraint(columnNames={"title", "year", "publisher_id"}))
class Book { ... }

61

This annotation looks a bit ugly perhaps, but it’s actually useful even as documentation.

The @Check annotation adds a check constraint to the table.

@Entity
@Check(name="ValidISBN", constraints="length(isbn)=13")
class Book { ... }

The @Check annotation is commonly used at the field level:

@Id @Check(constraints="length(isbn)=13")
String isbn;

62

Chapter 5. Interacting with the database

To interact with the database, that is, to execute queries, or to insert, update, or delete data, we need an instance of one of the following
objects:

* a JPAEntityManager,
 a Hibernate Session, or

» a Hibernate StatelessSession.

The Session interface extends EntityManager, and so the only difference between the two interfaces is that Session offers a few more
operations.

Actually, in Hibernate, every EntityManager is a Session, and you can narrow it like this:

Session session = entityManager.unwrap(Session.class);

An instance of Session (or of EntityManager) is a stateful session. It mediates the interaction between your program and the database via
operations on a persistence context.

In this chapter, we’re not going to talk much about StatelessSession. We’ll come back to this very useful APl when we talk about
performance. What you need to know for now is that a stateless session doesn’t have a persistence context.

Still, we should let you know that some people prefer to use StatelessSession everywhere. It’s a simpler programming
model, and lets the developer interact with the database more directly.

Stateful sessions certainly have their advantages, but they’re more difficult to reason about, and when something goes
wrong, the error messages can be more difficult to understand.

5.1. Persistence contexts

A persistence context is a sort of cache; we sometimes call it the "first-level cache", to distinguish it from the second-level cache. For every
entity instance read from the database within the scope of a persistence context, and for every new entity made persistent within the scope
of the persistence context, the context holds a unique mapping from the identifier of the entity instance to the instance itself.

Thus, an entity instance may be in one of three states with respect to a given persistence context:

1. transient — never persistent, and not associated with the persistence context,
2. persistent — currently associated with the persistence context, or
3. detached — previously persistent in another session, but not currently associated with this persistence context.

m

remove()

evict()

Persistent
clear(), close()

At any given moment, an instance may be associated with at most one persistence context.

The lifetime of a persistence context usually corresponds to the lifetime of a transaction, though it’s possible to have a persistence context
that spans several database-level transactions that form a single logical unit of work.

A persistence context—that is, a Session or EntityManager—absolutely positively must not be shared between multiple
threads or between concurrent transactions.

If you accidentally leak a session across threads, you will suffer.

Container-managed persistence contexts

In a container environment, the lifecycle of a persistence context scoped to the transaction will usually be managed for you.

63

There are several reasons we like persistence contexts.

1. They help avoid data aliasing: if we modify an entity in one section of code, then other code executing within the same persistence
context will see our modification.

2. They enable automatic dirty checking: after modifying an entity, we don’t need to perform any explicit operation to ask Hibernate to
propagate that change back to the database. Instead, the change will be automatically synchronized with the database when the
session is flushed.

3. They can improve performance by avoiding a trip to the database when a given entity instance is requested repeatedly in a given unit of
work.

4. They make it possible to transparently batch together multiple database operations.

A persistence context also allows us to detect circularities when performing operations on graphs of entities. (Even in a stateless session,
we need some sort of temporary cache of the entity instances we’ve visited while executing a query.)

On the other hand, stateful sessions come with some very important restrictions, since:

« persistence contexts aren’t threadsafe, and can’t be shared across threads, and

« a persistence context can’t be reused across unrelated transactions, since that would break the isolation and atomicity of the
transactions.

Furthermore, a persistence context holds a hard references to all its entities, preventing them from being garbage collected. Thus, the
session must be discarded once a unit of work is complete.

If you don’t completely understand the previous passage, go back and re-read it until you do. A great deal of human
suffering has resulted from users mismanaging the lifecycle of the Hibernate Session or JPAEntityManager.

We’ll conclude by noting that whether a persistence context helps or harms the performance of a given unit of work depends greatly on the
nature of the unit of work. For this reason Hibernate provides both stateful and stateless sessions.

5.2. Creating a session

Sticking with standard JPA-defined APIs, we saw how to obtain an EntityManagerFactory in Configuration using JPA XML. It’s quite
unsurprising that we may use this object to create an EntityManager:

EntityManager entityManager = entityManagerFactory.createEntityManager();

When we’re finished with the EntityManager, we should explicitly clean it up:

entityManager.close();
On the other hand, if we’re starting from a SessionFactory, as described in Programmatic configuration using JPA API, we may use:
Session session = sessionFactory.openSession();

But we still need to clean up:

session.close();

Injecting the EntityManager

If you’re writing code for some sort of container environment, you’ll probably obtain the EntityManager by some sort of dependency
injection. For example, in Java (or Jakarta) EE you would write:

@PersistenceContext EntityManager entityManager;

In Quarkus, injection is handled by CDI:

@Inject EntityManager entityManager;

Outside a container environment, we’ll also have to write code to manage database transactions.

64

5.3. Managing transactions

Using JPA-standard APIs, the EntityTransaction interface allows us to control database transactions. The idiom we recommend is the
following:

EntityManager entityManager = entityManagerFactory.createEntityManager();
EntityTransaction tx = entityManager.getTransaction();
try {

tx.begin();

//do some work

tx.commit();
3
catch (Exception e) {
if (tx.isActive()) tx.rollback();

throw e;
3
finally {
entityManager.close();
3

But this code is extremely tedious, so there’s a cleaner option:

entityManagerFactory.runInTransaction(entityManager -> {
// do the work

1;
When we need to return a value from within the anonymous function, we use callInTransaction() instead of runInTransaction().
Using Hibernate’s native APIs we can write something very similar:

sessionFactory.inTransaction(session -> {
//do the work

3

Container-managed transactions
In a container environment, the container itself is usually responsible for managing transactions. In Java EE or Quarkus, you’ll
probably indicate the boundaries of the transaction using the @Transactional annotation.
TheEntityTransaction interface provides a standard way to set the transaction timeout:

entityManager.getTransaction().setTimeout(30); // 30 seconds

EntityTransaction also provides a way to set the transaction to rollback-only mode:

entityManager.getTransaction().setRollbackOnly();

Atransaction in rollback-only mode will be rolled back when it completes.

Hibernate is not a software transactional memory. When a transaction rolls back, Hibernate makes no attempt to roll
back the state of objects held in memory to their state at the beginning of the transaction. After a transaction rollback,

o the persistence context must be discarded, and the state of its entities must be assumed inconsistent with the state held
by the database.

The interface Transaction extends EntityTransaction with some additional operations, including the ability to register transaction
completion callbacks.

65

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/Transaction.html

5.4. Operations on the persistence context

Of course, the main reason we need an EntityManager is to do stuff to the database. The following important operations let us interact with
the persistence context and schedule modifications to the data:

Table 5.1: Methods for modifying data and managing the persistence context

Method name and parameters Effect

persist(Object) Make a transient object persistent and schedule a SQL insert statement for later execution
remove(Object) Make a persistent object transient and schedule a SQL delete statement for later execution
merge(Object) Copy the state of a given detached object to a corresponding managed persistent instance and

return the persistent object

detach(Object) Disassociate a persistent object from a session without affecting the database
clear() Empty the persistence context and detach all its entities
flushO) Detect changes made to persistent objects association with the session and synchronize the

database state with the state of the session by executing SQL insert, update, and delete statements
Notice that persist() and remove() have no immediate effect on the database, and instead simply schedule a command for later execution.
Also notice that there’s no update() operation for a stateful session. Modifications are automatically detected when the session is flushed.

On the other hand, except for getReference(), the following operations all result in immediate access to the database:

Table 5.2: Methods for reading and locking data

Method name and parameters Effect

find(Class,Object) Obtain a persistent object given its type and its id

find(Class,Object,LockModeType) Obtain a persistent object given its type and its id, requesting the given optimistic or pessimistic lock
mode

find(EntityGraph,Object) Obtain a persistent object given its id and an EntityGraph specifying its type and associations which

should be eagerly fetched

getReference(Class, id) Obtain a reference to a persistent object given its type and its id, without actually loading its state
from the database

getReference(Object) Obtain a reference to a persistent object with the same identity as the given detached instance,
without actually loading its state from the database

refresh(Object) Refresh the persistent state of an object using a new SQL select to retrieve its current state from the
database
refresh(Object,LockModeType) Refresh the persistent state of an object using a new SQL select to retrieve its current state from the

database, requesting the given optimistic or pessimistic lock mode

lock(Object,LockModeType) Obtain an optimistic or pessimistic lock on a persistent object

Any of these operations might throw an exception. Now, if an exception occurs while interacting with the database, there’s no good way to
resynchronize the state of the current persistence context with the state held in database tables.

Therefore, a session is considered to be unusable after any of its methods throws an exception.

The persistence context is fragile. If you receive an exception from Hibernate, you should immediately close and discard
the current session. Open a new session if you need to, but throw the bad one away first.

One very important kind of exception which can happen when data is shared between concurrent units of work is an optimistic lock failure.
Optimistic locks are verified by checking versions. A version check is included in the where clause of every SQL update or delete statement
for a versioned entity. If a version check fails—that is, if no rows are updated—Hibernate infers that the entity was updated in some other
unit of work and throws an OptimisticLockException to indicate that the current session is working with stale data. As with other
exceptions, this loss of synchronization between the persistence context and the database means that we must discard the current session.

66

Some of these operations listed above require slightly more care than others. When you call detach(), clear(), flush(),
or refresh(), you've already strayed from the narrow path. You didn’t stray far—and you probably had a good reason for
going there—but you’re in territory where Hibernate just has to assume you know what you’re doing. If you start to feel
that this terrain is bogging you down, consider using a stateless session.

Four of these operations accept options, allowing influence over their behavior.

Method name and parameters Effect

find(Class,Object,FindOption..) Obtain a persistent object given its type and its id, using the specified
options

find(EntityGraph,Object,FindOption..) Obtain a persistent object given its id and an EntityGraph specifying its

type and associations which should be eagerly fetched, using the
specified options

refresh(Object,LockModeType,RefreshOption..) Refresh the persistent state of an object using a new SQL select to
retrieve its current state from the database, requesting the given
optimistic or pessimistic lock mode, using the specified options

lock(Object,LockModeType, LockOption..) Obtain an optimistic or pessimistic lock on a persistent object, using
the specified options

For example, JPA provides the Timeout class which is a FindOption, a RefreshOption, and a LockOption.

var book = entityManger.find(Book.class, isbn, Timeout.ms(100), CacheStoreMode.BYPASS);

Finally, the Hibernate Session offers the following method, which is capable of efficiently loading multiple entity instances in parallel:

Method name and parameters Effect

findMultiple(Class,List<Object>,FindOption..) Obtain a list of persistent objects given their type and their ids, using
the specified options

findMultiple(EntityGraph,List<Object>,FindOption..) Obtain a list of persistent objects given their ids and an EntityGraph
specifying their type and associations which should be eagerly fetched,
using the specified options

The following code results in a single SQL select statement:

List<Book> books = session.findMultiple(Book.class, bookIds);

As discussed earlier, Hibernate offers the ability to map a natural id and perform load operations using that natural id. This is accomplished
using the KeyType#NATURAL FindOption -

var bookKey = new BookKey(...);
var book = session.find(Book.class, bookKey, NATURAL);
var books = session.findMultiple(Book.class, List.of(bookKey), NATURAL);

When loading by natural id, the type of value accepted depends on the type of natural id. For single-attribute natural ids, whether defined
by a basic or embedded type, the attribute type should be used. For multi-attribute natural ids, Hibernate will accept a number of forms:

* Ifa@NaturalldClass is defined, an instance of the natural id class may be used.
« An array of the individual attribute values, ordered alphabetically by name, may be used.
 AMap of the individual attribute values, keyed by the attribute name, may be used.

Each of the operations we’ve seen so far affects a single entity instance passed as an argument. But there’s a way to set things up so that an
operation will propagate to associated entities.

See the User Guide for more details about loading by natural ids.

67

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/NaturalIdClass.html
https://docs.hibernate.org/orm/8.0/userguide/html_single/#find-by-natural-id

5.5. Cascading persistence operations

It’s quite often the case that the lifecycle of a child entity is completely dependent on the lifecycle of some parent. This is especially
common for many-to-one and one-to-one associations, though it’s very rare for many-to-many associations.

For example, it’s quite common to make an Order and all its Items persistent in the same transaction, or to delete a Project and its Filess
at once. This sort of relationship is sometimes called a whole/part-type relationship.

Cascading is a convenience which allows us to propagate one of the operations listed in Operations on the persistence context from a
parent to its children. To set up cascading, we specify the cascade member of one of the association mapping annotations, usually
@OneToMany or @neToOne.

@Entity
class Order {

@0OneToMany (mappedby=Item_.ORDER,
// cascade persist(), remove(), and refresh() from Order to Item
cascade={PERSIST,REMOVE,REFRESH},
// also remove() orphaned Items
orphanRemoval=true)
private Set<Item> items;

Orphan removal indicates that an Item should be automatically deleted if it is removed from the set of items belonging to its parent Order.

5.6. Proxies and lazy fetching

Our data model is a set of interconnected entities, and in Java our whole dataset would be represented as an enormous interconnected
graph of objects. It’s possible that this graph is disconnected, but more likely it’s connected, or composed of a relatively small number of
connected subgraphs.

Therefore, when we retrieve an object belonging to this graph from the database and instantiate it in memory, we simply can’t recursively
retrieve and instantiate all its associated entities. Quite aside from the waste of memory on the VM side, this process would involve a huge
number of round trips to the database server, or a massive multidimensional cartesian product of tables, or both. Instead, we’re forced to
cut the graph somewhere.

Hibernate solves this problem using proxies and lazy fetching. A proxy is an object that masquerades as a real entity or collection, but
doesn’t actually hold any state, because that state has not yet been fetched from the database. When you call a method of the proxy,
Hibernate will detect the call and fetch the state from the database before allowing the invocation to proceed to the real entity object or
collection.

Now for the gotchas:

1. Hibernate will only do this for an entity which is currently associated with a persistence context. Once the session ends, and the
persistence context is cleaned up, the proxy is no longer fetchable, and instead its methods throw the hated
LazyInitializationException

2. For a polymorphic association, Hibernate does not know the concrete type of the referenced entity when the proxy is instantiated, and
so operations like instanceof and typecasts do not work correctly when applied to a proxy.

3. Around trip to the database to fetch the state of a single entity instance is just about the least efficient way to access data. It almost
inevitably leads to the infamous N+1 selects problem we’ll discuss later when we talk about how to optimize association fetching.

The @ConcreteProxy annotation solves gotcha 2, but at the cost of performance (extra joins), and so its use is not
generally recommended, except in very special circumstances.

We’re getting a bit ahead of ourselves here, but let’s quickly mention the general strategy we recommend to navigate
past these gotchas:

+ All associations should be set fetch=LAZY to avoid fetching extra data when it’s not needed. As we mentioned earlier,
this setting is not the default for @ManyToOne associations, and must be specified explicitly.

« But strive to avoid writing code which triggers lazy fetching. Instead, fetch all the data you’ll need upfront at the
beginning of a unit of work, using one of the techniques described in Association fetching, usually, using join fetch in
HQL or an EntityGraph.

It’s important to know that some operations which may be performed with an unfetched proxy don’t require fetching its state from the
database. First, we’re always allowed to obtain its identifier:

68

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/ConcreteProxy.html

var pubId = entityManager.find(Book.class, bookId).getPublisher().getId(); // does not fetch publisher

Second, we may create an association to a proxy:

book . setPublisher(entityManager.getReference(Publisher.class, pubId)); // does not fetch publisher

Sometimes it’s useful to test whether a proxy or collection has been fetched from the database. JPA lets us do this using the
PersistenceUnitUtil:

boolean authorsFetched = entityManagerFactory.getPersistenceUnitUtil().isLoaded(book.getAuthors());

Hibernate has a slightly easier way to do it:

boolean authorsFetched = Hibernate.isInitialized(book.getAuthors());

Similarly, PersistenceUnitUtil.load() force-fetches a proxy or collection:

Book book = session.find(Book.class, bookId); // fetch just the Book, leaving authors unfetched
entityManagerFactory.getPersistenceUnitUtil().load(book.getAuthors());

Again, Hibernate.initialize() is slightly more convenient:

Book book = session.find(Book.class, bookId); // fetch just the Book, leaving authors unfetched
Hibernate.initialize(book.getAuthors()); // fetch the Authors

On the other hand, the above code is very inefficient, requiring two trips to the database to obtain data that could in principle be retrieved
with just one query.

The static methods of the Hibernate class let us do a lot more, and it’s worth getting a bit familiar with them. Of particular interest are the
operations which let us work with unfetched collections without fetching their state from the database. For example, consider this code:

Book book = session.find(Book.class, bookId); // fetch just the Book, leaving authors unfetched
Author authorRef = session.getReference(Author.class, authorId); // obtain an unfetched proxy
boolean isByAuthor = Hibernate.contains(book.getAuthors(), authorRef); // no fetching

This code fragment leaves both the set book. authors and the proxy authorRef unfetched.
It’s clear from the discussion above that we need a way to request that an association be eagerly fetched using a database join, thus

protecting ourselves from the infamous N+1 selects. One way to do this is by passing an EntityGraph to find().

5.7. Entity graphs and eager fetching

When an association is mapped fetch=LAZY, it won’t, by default, be fetched when we call the find() method. We may request that an
association be fetched eagerly (immediately) by passing an EntityGraph to find().

var graph = entityManager.createEntityGraph(Book.class);
graph.addSubgraph(Book_.publisher);
Book book = entityManager.find(graph, bookId);

This code adds a left outer jointo our SQL query, fetching the associated Publisher along with the Book.

We may even attach additional nodes to our EntityGraph:

var graph = session.createEntityGraph(Book.class);
graph.addSubgraph(Book_.publisher);
graph.addPluralSubgraph(Book_.authors).addSubgraph(Author_.person);
Book book = entityManager.find(graph, bookId);

This results in a SQL query with four left outer joins.

They let us refer to attributes of our model in a completely type-safe way. We’ll use them again, below, when we talk

o In the code examples above, The classes Book_ and Author_ are generated by Hibernate Processor, as we saw earlier.
about Criteria queries.

69

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/Hibernate.html

JPA specifies that any given EntityGraph may be interpreted in two different ways.

« Afetch graph specifies exactly the associations that should be eagerly loaded. Any association not belonging to the entity graph is
proxied and loaded lazily only if required.

* Aload graph specifies that the associations in the entity graph are to be fetched in addition to the associations mapped fetch=EAGER.

An EntityGraph passed directly to find() is always interpreted as a load graph.

You’re right, the names make no sense. But don’t worry, if you take our advice, and map your associations fetch=LAZY,
there’s no difference between a "fetch" graph and a "load" graph, so the names don’t matter.

JPA even specifies a way to define named entity graphs using annotations. But the annotation-based APl is so verbose
that it’s just not worth using.

5.8. Controlling lookup by id

As we will soon see in the next chapter, we can do almost anything via HQL, criteria, or native SQL queries. But when we already know the
identifier of the entity we need, a query can feel like overkill. And queries don’t make efficient use of the second level cache.

We met the find() and findMultiple() methods earlier. These are the most basic ways to perform a lookup by id. But they can’t quite do
everything. Therefore, Hibernate has some APIs that streamline certain more complicated lookups:

Table 5.5: Operations for lookup by id

Method name Purpose

byId() Lets us specify association fetching via an EntityGraph, as we saw; also lets us specify some
additional options, including how the lookup interacts with the second level cache, and whether the
entity should be loaded in read-only mode

byMultipleIds() Lets us load a batch of ids at the same time

Since the introduction of FindOption in JPA 3.2, byId() is now much less useful and deprecated. Instead, use find() and
findMultiple() as discussed earlier.

Batch loading is very useful when we need to retrieve multiple instances of the same entity class by id:

var graph = session.createEntityGraph(Book.class);
graph.addSubgraph(Book_.publisher);

List<Book> books =
session.byMultipleIds(Book.class)
.withFetchGraph(graph) // control association fetching

.withBatchSize(20) // specify an explicit batch size
.with(CacheMode.GET) // control interaction with the cache
.multilLoad(bookIds);

The given list of bookIds will be broken into batches, and each batch will be fetched from the database in a single select. If we don’t specify
the batch size explicitly, a batch size will be chosen automatically.

We also have some operations for working with lookups by natural id:

Method name Purpose

bySimpleNaturalld() For an entity with just one attribute is annotated @Naturalld
byNaturalld() For an entity with multiple attributes are annotated @Naturalld
byMultipleNaturalId() Lets us load a batch of natural ids at the same time

Again, see the User Guide for more details about loading by natural ids.

Here’s how we can retrieve an entity by its composite natural id:

Book book =

70

https://docs.hibernate.org/orm/8.0/userguide/html_single/#find-by-natural-id

session.byNaturalId(Book.class)
.using(Book_.isbn, isbn)
.using(Book_.printing, printing)
.load();

Notice that this code fragment is completely typesafe, again thanks to Hibernate Processor.

5.9. Controlling state retrieval during merge

The merge() operation is usually used when some interaction with a user or automated system spans multiple transactions, with each
transaction having its own persistence context:

1 anentity e is retrieved in one persistence context, and then the current transaction ends, resulting in destruction of the persistence
context and in the entity becoming detached, then

2. eis modified in some way while detached, and then

3. finally, the modification is made persistent by merging the detached instance in a second transaction, with a new persistence context,
by calling session.merge(e).

In step 3, the original entity instance e remains detached, but merge () returns a distinct instance f representing the same row of the
database and associated with the new persistence context. That is, merge () trades a detached instance for a persistent instance
representing the same row.

To determine the nature of the modification held in e and to guarantee correct semantics with respect to optimistic locking, Hibernate first
selects the current persistent state of the entity from the database before applying the modification to f.

Cascade merge allows multiple modifications held in a graph of entity instances to be made persistent in one call to merge(). When merge ()
is used with cascading—that is, when the merge () operation is applied to a root entity with associations mapped

cascade=MERGE — Hibernate issues a single select statement to retrieve the current database state of the root entity and all its associated
entities. This behavior avoids the use of N+1 select statements for state retrieval during cascade merge but, in certain circumstances, the
query might be suboptimal. On the other hand, this query does not occur if the root entity was already loaded into the persistence context
before merge() is called.

Therefore, when using the EntityManager API, we may gain control over the way state is loaded before a merge () just by calling find()
before calling merge .

Book book = ... ;

var graph = entityManager.createEntityGraph(Book.class);
graph.addSubgraph(Book_.chapters); // Book.chapters mapped cascade=MERGE
entityManager.find(graph, book.getIsbn()); // force loading of the book
entityManager.merge(book); // merge the detached objet

The Session interface provides a streamlined alternative:

Book book = ... ;

var graph = session.createEntityGraph(Book.class);
graph.addSubgraph(Book_.chapters);

session.merge(book, graph); // equivalent to find() then merge()

When merging multiple root entities, findMultiple() may be used instead of find().

List<Book> books = ... ;
var isbns = books.stream().map(Book::getIsbn).toList();
var graph = session.createEntityGraph(Book.class);
graph.addSubgraph(Book_.chapters); // Book.chapters mapped cascade=MERGE
session.findMultiple(graph, isbns); // force loading of the books
for (var book in books) {

session.merge(book);

In some cases, merge() is much less efficient than the upsert() operation of StatelessSession.

5.10. Flushing the session

From time to time, a flush operation is triggered, and the session synchronizes dirty state held in memory—that is, modifications to the
state of entities associated with the persistence context—with persistent state held in the database. Of course, it does this by executing SQL

71

INSERT, UPDATE, and DELETE statements.
By default, a flush is triggered:

« when the current transaction commits, for example, when Transaction.commit() is called,
« before execution of a query whose result would be affected by the synchronization of dirty state held in memory, or
« when the program directly calls flush().

In the following code, the flush occurs when the transaction commits:

session.getTransaction().begin();
session.persist(author);
var books =
// new Author does not affect results of query for Books
session.createSelectionQuery("from Book")
// no need to flush
.getResultList();
// flush occurs here, just before transaction commits
session.getTransaction().commit();

But in this code, the flush occurs when the query is executed:

session.getTransaction().begin();
session.persist(book);
var books =
// new Book would affect results of query for Books
session.createSelectionQuery("from Book")
// flush occurs here, just before query is executed
.getResultList();
// changes were already flushed to database, nothing to flush
session.getTransaction().commit();

It’s always possible to call flush() explicitly:

session.getTransaction().begin();

session.persist(author);

session.flush(); // explicit flush

var books =

session.createSelectionQuery("from Book")

// nothing to flush
.getResultList();

// nothing to flush

session.getTransaction().commit();

Notice that SQL statements are not usually executed synchronously by methods of the Session interface like persist()
and remove (). If synchronous execution of SQL is desired, the StatelessSession allows this.

This behavior can be controlled by explicitly setting the flush mode. For example, to disable flushes that occur before query execution, call:

entityManager.setFlushMode(FlushModeType.COMMIT);

Hibernate allows greater control over the flush mode than JPA:

session.setHibernateFlushMode (FlushMode . MANUAL) ;

Since flushing is a somewhat expensive operation (the session must dirty-check every entity in the persistence context), setting the flush
mode to COMMIT can occasionally be a useful optimization. But take care—in this mode, queries might return stale data:

session.getTransaction().begin();
session.setFlushMode(FlushModeType.COMMIT); // disable AUTO-flush
session.persist(book);
var books =
// flushing on query execution disabled
session.createSelectionQuery("from Book")
// no flush, query returns stale results
.getResultList();

72

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/FlushMode.html

// flush occurs here, just before transaction commits
session.getTransaction().commit();

Table 5.7: Flush modes

Hibernate JPA Interpretation

FlushMode FlushModeType

MANUAL Never flush automatically

COMMIT COMMIT Flush before transaction commit

AUTO AUTO Flush before transaction commit, and before execution of a query whose results might be affected by

modifications held in memory

ALWAYS Flush before transaction commit, and before execution of every query

A second way to reduce the cost of flushing is to load entities in read-only mode:

* Session.setDefaultReadOnly(true) specifies that all entities loaded by a given session should be loaded in read-only mode by default,
* SelectionQuery.setReadOnly(true) specifies that every entity returned by a given query should be loaded in read-only mode, and
* Session.setReadOnly(Object, true) specifies that a given entity already loaded by the session should be switched to read-only mode.

Hibernate’s ReadOnlyMode is a custom FindOption:

var book = entityManager.find(Book.class, isbn, ReadOnlyMode.READ_ONLY);

It’s not necessary to dirty-check an entity instance in read-only mode.

5.11. Lifecycle callbacks and entity listeners

The annotations @PrePersist, @reRemove, @PreUpdate, @PostPersist, @PostRemove, @PostUpdate, and @PostLoad allow an entity to respond
to persistence lifecycle operations and maintain its transient internal state. For example:

@Entity
class Order {

transient double total;
@PostLoad

void computeTotal() {
total = items.stream().mapToDouble(i -> i.price * i.quantity).sum();

If we need to interact with technical objects, we can place the lifecycle callback on a separate class, called an entity listener. The
@EntitylListeners annotation specifies the listeners for a given entity class:

@Entity
@EntitylListeners(OrderEvents.class)
class Order { ... }

An entity listener may inject CDI beans:

// entity listener class
class OrderEvents {
@Inject
Event<NewOrder> newOrderEvent;

@PostPersist

void newOrder(Order order) {
// send a CDI event
newOrderEvent.fire(new NewOrder(order));

73

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/Session.html#setDefaultReadOnly(boolean)
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/Session.html#setDefaultReadOnly(boolean)
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/ReadOnlyMode.html

Asingle entity listener class may even be a generic listener that receives lifecycle callbacks for multiple different entity classes.

The venerable Interceptor interface is a more powerful alternative to entity listeners. Interceptor and its friend
CustomEntityDirtinessStrategy allow advanced users to augment the built-in handling of managed entities with custom
behavior. These interfaces are very useful if you’re building your own persistence framework with Hibernate as the
foundation.

We’re about to see one way Interceptor can be used.

5.12. Transient vs detached

Sometimes, Hibernate needs to be able to distinguish whether an entity instance is:

 a brand-new transient object the client just instantiated using new, or
+ adetached object, which previously belonged to a persistence context.

This is a bit of a problem, since there’s no good and efficient way for Hibernate to just tag an entity with a Post-it saying "I’ve seen you
before".

Therefore, Hibernate uses heuristics. The two most useful heuristics are:

1. If the entity has a generated identifier, the value of the id field is inspected: if the value currently assigned to the id field is the default
value for the type of the field, then the object is transient; otherwise, the object is detached.

2. If the entity has a version, the value of the version field is inspected: if the value currently assigned to the version field is the default
value, or a negative number, then the object is transient; otherwise, the object is detached.

If the entity has neither a generated id, nor a version, Hibernate usually falls back to just doing something reasonable. In extreme cases a
SELECT query will be issued to determine whether a matching row exists in the database.

making a new transient instance look like it’s detached. We therefore strongly discourage assigning values to fields

These heuristics aren’t perfect. It’s quite easy to confuse Hibernate by assigning a value to the id field or version field,
A annotated @GeneratedValue or @Version before passing an entity to Hibernate.

If the heuristics ever happen cause a real problem, you may implement your own Post-it tagging via Interceptor.isTransient().

5.13. Interacting directly with JDBC

From time to time we run into the need to write some code that calls JDBC directly. The EntityManager now offers a convenient way to do
this:

entityManager.runWithConnection((Connection connection) -> {
try (var callable = connection.prepareCall("{call myproc(?)}")) {
callable.setlLong(1, argument);
callable.execute();
}
s

To return a value, use callWithConnection() instead of runWithConnection().

The Hibernate Session has an older, slightly simpler API:

session.doWork(connection -> {
try (var callable = connection.prepareCall("{call myproc(?)}")) {
callable.setLong(1, argument);
callable.execute();
}
1

If the work returns a value, use doReturningWork() instead of dowork ().

The Connection passed to the work is the same connection being used by the session, and so any work performed using that connection
occurs in the same transaction context.

In a container environment where transactions and database connections are managed by the container, this might not

74

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/Interceptor.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/CustomEntityDirtinessStrategy.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/Interceptor.html#isTransient(java.lang.Object)

be the easiest way to obtain the JDBC connection.

5.14. What to do when things go wrong

Object/relational mapping has been called the "Vietnam of computer science". The person who made this analogy is American, and so one
supposes that he meant to imply some kind of unwinnable war. This is quite ironic, since at the very moment he made this comment,
Hibernate was already on the brink of winning the war.

Today, Vietnam is a peaceful country with exploding per-capita GDP, and ORM is a solved problem. That said, Hibernate is complex, and
ORM still presents many pitfalls for the inexperienced, even occasionally for the experienced. Sometimes things go wrong.

In this section we’ll quickly sketch some general strategies for avoiding "quagmires".

Understand SQL and the relational model. Know the capabilities of your RDBMS. Work closely with the DBA if you’re lucky enough to
have one. Hibernate is not about "transparent persistence" for Java objects. It’s about making two excellent technologies work
smoothly together.

Log the SQL executed by Hibernate. You cannot know that your persistence logic is correct until you’ve actually inspected the SQL that’s
being executed. Even when everything seems to be "working", there might be a lurking N+1 selects monster.

Be careful when modifying bidirectional associations. In principle, you should update both ends of the association. But Hibernate
doesn’t strictly enforce that, since there are situations where such a rule would be too heavy-handed. Whatever the case, it’s up to you
to maintain consistency across your model.

Never leak a persistence context across threads or concurrent transactions. Have a strategy or framework to guarantee this never
happens.

When running queries that return large result sets, take care to consider the size of the session cache. Consider using a stateless session.
Think carefully about the semantics of the second-level cache, and how the caching policies impact transaction isolation.

Avoid fancy bells and whistles you don’t need. Hibernate is incredibly feature-rich, and that’s a good thing, because it serves the needs
of a huge number of users, many of whom have one or two very specialized needs. But nobody has all those specialized needs. In all
probability, you have none of them. Write your domain model in the simplest way that’s reasonable, using the simplest mapping
strategies that make sense.

When something isn’t behaving as you expect, simplify. Isolate the problem. Find the absolute minimum test case which reproduces the
behavior, before asking for help online. Most of the time, the mere act of isolating the problem will suggest an obvious solution.

If you’re new to Hibernate, avoid frameworks and libraries that "wrap" JPA. You need an excellent understanding of Hibernate and JPA
first, before introducing unnecessary additional moving parts. If there’s any one criticism of Hibernate and ORM that sometimes does
ring true, it’s that it takes you too far from direct control over JDBC. An additional layer just takes you even further. If you insist you
really do need this extra layer, we beg you to consider Hibernate Data Repositories instead of older third-party solutions.

Avoid copy/pasting code from random bloggers or stackoverflow reply guys. Many of the suggestions you’ll find online just aren’t the
simplest solution, and many aren’t correct for Hibernate 6 and 7. Instead, understand what you’re doing; study the Javadoc of the APIs
you’re using; read the JPA specification; follow the advice we give in this document; go direct to the Hibernate team on Zulip. (Sure, we
can be a bit cantankerous at times, but we do always want you to be successful.)

Always consider other options. You don’t have to use Hibernate for everything.

75

https://hibernate.org/repositories/

Chapter 6. Executing queries

Hibernate features three complementary ways to write queries:

» the Hibernate Query Language, an extremely powerful superset of JPQL, which abstracts most of the features of modern dialects of SQL,

« the JPA criteria query API, along with extensions, allowing almost any HQL query to be constructed programmatically via a typesafe API,
and, of course

« for when all else fails, native SQL queries.

In addition, Hibernate 7 provides a convenient new way to programmatically customize a query before executing it.

6.1. HQL queries

A full discussion of the query language would require almost as much text as the rest of this Short Guide. Fortunately, HQL is already
described in exhaustive (and exhausting) detail in A Guide to Hibernate Query Language. It doesn’t make sense to repeat that information
here.

Here we want to see how to execute a query via the Session or EntityManager APl. The method we call depends on what kind of query it is:

« selection queries return a result list, but do not modify the data, but
« mutation queries modify data, and return the number of modified rows.

Selection queries usually start with the keyword select or from, whereas mutation queries begin with the keyword insert, update, or
delete.

Table 6.1: Executing HQL

Kind Session method EntityManager method Query execution method

Selection createSelectionQuery(String,Class) createQuery(String,Class) getResultList(),
getSingleResult(), or
getSingleResultOrNull()

Mutation createMutationQuery(String) createQuery(String) executeUpdate()

So for the Session APl we would write:

List<Book> matchingBooks =
session.createSelectionQuery("from Book where title like :titleSearchPattern", Book.class)
.setParameter("titleSearchPattern", titleSearchPattern)
.getResultList();

Or, if we're sticking to the JPA-standard APIs:

List<Book> matchingBooks =
entityManager.createQuery("select b from Book b where b.title like :titleSearchPattern", Book.class)
.setParameter("titleSearchPattern", titleSearchPattern)
.getResultList();

The main difference between createSelectionQuery() and createQuery() is that createSelectionQuery() throws an exception if passed a
query string that begins with insert, delete, or update.

We’ve been using getResultList() because we’ve been expecting our queries to return multiple results. If we’re expecting a query to return
a single result, we can use getSingleResult().

Book book =
session.createSelectionQuery("from Book where isbn = ?1", Book.class)
.setParameter(1, isbn)
.getSingleResult();

Or, if we’re expecting it to return at most one result, we can use getSingleResultOrNull().

Book bookOrNull =
session.createSelectionQuery("from Book where isbn = ?1", Book.class)
.setParameter(1, isbn)
.getSingleResultOrNull();

76

https://docs.hibernate.org/orm/8.0/querylanguage/html_single/
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/query/QueryProducer.html#createSelectionQuery(java.lang.String,java.lang.Class)
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/query/QueryProducer.html#createMutationQuery(java.lang.String)
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/query/SelectionQuery.html#getResultList()
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/query/SelectionQuery.html#getSingleResult()
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/query/SelectionQuery.html#getSingleResultOrNull()

The difference, of course, is that getSingleResult() throws an exception if there’s no matching row in the database, whereas
getSingleResultOrNull() just returns null

To execute a MutationQuery, we use executeUpdate(), which returns the number of entities affected by the insert, update, or delete.

6.2. Query parameters

Queries are often parameterized.

* Inthe query above, : titleSearchPattern is called a named parameter.
« Alternatively, we may label a parameter by a number. Such a parameter is called an ordinal parameter.

We may easily rewrite our query to use an ordinal parameter:

List<Book> matchingBooks =
session.createSelectionQuery("from Book where title like ?1", Book.class)
.setParameter(1, titleSearchPattern)
.getResultList();

When a query has multiple parameters, named parameters tend to be easier to read, even if slightly more verbose.

Never concatenate user input with HQL and pass the concatenated string to createSelectionQuery(). This would open
up the possibility for an attacker to execute arbitrary code on your database server.

The setParameter() methods specify arguments to query parameters.

The two-argument forms of setParameter() are perfect for most purposes, but very occasionally it’s necessary to resolve
an ambiguity in the interpretation of the argument value by explicitly specifying the type of the argument. The best way
to identify the type is via a reference to a JPA metamodel Type. There are two ways to do this:

¢ by passing the Type as a third argument to setParameter(), or
* by packaging the argument and its Type in a TypedParameterValue.

For example, we may pass a static metamodel reference to setParameter().

session.createSelectionQuery("from Person where address = :address")
.setParameter("address" address, Person_.address.getType())
.getResultList();

6.3. Auto-flush

By default, Hibernate dirty checks entities in the persistence context before executing a query, in order to determine if there are changes
which have not yet been flushed to the database, but which might affect the results of the query. If there are unflushed changes, then
Hibernate goes ahead and executes an automatic flush before executing the query. That way, the query won’t return stale results which fail
to reflect changes made to data within the current unit of work. But if there are many entities association with the persistence context, then
this can be an expensive operation.

To disable this behavior, set the query flush mode to NO_FLUSH:

Book bookOrNull =
session.createSelectionQuery("from Book where isbn = ?1", Book.class)
.setParameter(1, isbn)
.setQueryFlushMode (QueryFlushMode .NO_FLUSH)
.getSingleResult();

Or, especially if you’re using JPA-standard APIs, use FlushModeType . COMMIT:

Book bookOrNull =
session.createSelectionQuery("from Book where isbn = ?1", Book.class)
.setParameter(1, isbn)
. setFlushMode (FlushModeType . COMMIT)
.getSingleResult();

o Setting the flush mode to NO_FLUSH, COMMIT, or MANUAL might cause the query to return stale results.

7

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/query/MutationQuery.html#executeUpdate()
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/query/CommonQueryContract.html#setParameter(java.lang.String,java.lang.Object)
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/query/CommonQueryContract.html#setParameter(java.lang.String,java.lang.Object,jakarta.persistence.metamodel.Type)
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/query/TypedParameterValue.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/query/QueryFlushMode.html

Occasionally we need to build a query at runtime, from a set of optional conditions. For this, JPA offers an API which allows programmatic
construction of a query.

6.4. Criteria queries

Imagine we’re implementing some sort of search screen, where the user of our system is offered several different ways to constrain the
query result set. For example, we might let them search for books by title and/or the author name. Of course, we could construct a HQL
query by string concatenation, but this is a bit fragile, so it’s quite nice to have an alternative.

HQL is implemented in terms of criteria objects

Actually, since Hibernate 6, every HQL query is compiled to a criteria query before being translated to SQL. This ensures that the
semantics of HQL and criteria queries are identical.

First we need an object for building criteria queries. Using the JPA-standard APIs, this would be a CriteriaBuilder, and we get it from the
EntityManagerFactory

CriteriaBuilder builder = entityManagerFactory.getCriteriaBuilder();

But if we have a SessionFactory, we get something much better, aHibernateCriteriaBuilder:

HibernateCriteriaBuilder builder = sessionFactory.getCriteriaBuilder();

The HibernateCriteriaBuilder extends CriteriaBuilder and adds many operations that JPQL doesn’t have.

If you’re using EntityManagerFactory, don’t despair, you have two perfectly good ways to obtain the
HibernateCriteriaBuilder associated with that factory. Either:

HibernateCriteriaBuilder builder =
entityManagerFactory.unwrap(SessionFactory.class).getCriteriaBuilder();

Or simply:

HibernateCriteriaBuilder builder =
(HibernateCriteriaBuilder) entityManagerFactory.getCriteriaBuilder();

We’re ready to create a criteria query.

CriteriaQuery<Book> query = builder.createQuery(Book.class);
Root<Book> book = query.from(Book.class);
Predicate where = builder.conjunction();
if (titlePattern != null) {
where = builder.and(where, builder.like(book.get(Book_.title), titlePattern));
3
if (namePattern != null) {
Join<Book,Author> author = book.join(Book_.author);
where = builder.and(where, builder.like(author.get(Author_.name), namePattern));
¥
query.select(book).where(where)
.orderBy(builder.asc(book.get(Book_.title)));

Here, as before, the classes Book_ and Author_ are generated by Hibernate Processor.

Notice that we didn’t bother treating titlePattern and namePattern as parameters. That’s safe because, by default,
Hibernate automatically and transparently treats strings passed to the CriteriaBuilder as JDBC parameters.

Execution of a criteria query works almost exactly like execution of HQL.

78

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/query/criteria/HibernateCriteriaBuilder.html

Table 6.2: Executing criteria queries

Kind Session method EntityManager method
Selection createSelectionQuery(CriteriaQuery) createQuery(CriteriaQuery)
Mutation createMutationQuery(CriteriaUpdate) or createQuery(CriteriaUpdate) or
createMutationQuery(CriteriaDelete) createQuery(CriteriaDelete)
For example:

List<Book> matchingBooks =
session.createSelectionQuery(query)
.getResultList();

Update, insert, and delete queries work similarly:

CriteriaDelete<Book> delete = builder.createCriteriaDelete(Book.class);
Root<Book> book = delete.from(Book.class);
delete.where(builder.1t(builder.year(book.get(Book_.publicationDate)), 2000));
session.createMutationQuery(delete).executeUpdate();

Query execution method
getResultList(),
getSingleResult(), or

getSingleResultOrNull()

executeUpdate()

It’s even possible to transform a HQL query string to a criteria query, and modify the query programmatically before

execution:

HibernateCriteriaBuilder builder = sessionFactory.getCriteriaBuilder();

var query = builder.createQuery("from Book where year(publicationDate) > 2000", Book.class);

var root = query.getRoot(@, Book.class);

query.where(builder.like(root.get(Book_.title), builder.literal("Hibernate%")));
query.orderBy(builder.asc(root.get(Book_.title)), builder.desc(root.get(Book_.isbn)));

List<Book> matchingBooks = session.createSelectionQuery(query).getResultList();

This is starting to get a bit messy. In Hibernate 7, we can often use Restriction instead.

Do you find some of the code above a bit too verbose? We do.

6.5. A more comfortable way to write criteria queries

Actually, what makes the JPA criteria API less ergonomic than it should be is the need to call all operations of the CriteriaBuilder as
instance methods, instead of having them as static functions. The reason it works this way is that each JPA provider has its own

implementation of CriteriaBuilder.

The helper class CriteriaDefinition can reduce the verbosity of criteria queries by eliminating the need to explicitly qualify calls to the

methods of CriteriaBuilder. Our previous example would look like this:

CriteriaQuery<Book> query =
new CriteriaDefinition(entityManagerFactory, Book.class) {{
select(book);
if (titlePattern != null) {
restrict(like(book.get(Book_.title), titlePattern));
}
if (namePattern != null) {
var author = book. join(Book_.author);
restrict(like(author.get(Author_.name), namePattern));
}
orderBy(asc(book.get(Book_.title)));
3}

When all else fails, and sometimes even before that, we’re left with the option of writing a query in SQL.

79

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/query/QueryProducer.html#createSelectionQuery(jakarta.persistence.criteria.CriteriaQuery)
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/query/QueryProducer.html#createMutationQuery(jakarta.persistence.criteria.CriteriaUpdate)
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/query/QueryProducer.html#createMutationQuery(jakarta.persistence.criteria.CriteriaDelete)
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/query/criteria/CriteriaDefinition.html

6.6. Native SQL queries

HQL is a powerful language which helps reduce the verbosity of SQL, and significantly increases portability of queries between databases.
But ultimately, the true value of ORM is not in avoiding SQL, but in alleviating the pain involved in dealing with SQL result sets once we get
them back to our Java program. As we said right up front, Hibernate’s generated SQL is meant to be used in conjunction with handwritten
SQL, and native SQL queries are one of the facilities we provide to make that easy.

Table 6.3: Executing SQL

Kind Session method EntityManager method Query execution method

Selection createNativeQuery(String,Class) createNativeQuery(String,Class) getResultList(),
getSingleResult(), or
getSingleResultOrNull()

Mutation createNativeMutationQuery(String) createNativeQuery(String) executeUpdate()
Stored createStoredProcedureCall(String) createStoredProcedureQuery(String) execute()
procedure

For the most simple cases, Hibernate can infer the shape of the result set:

Book book =
session.createNativeQuery("select * from Books where isbn = ?1", Book.class)
.setParameter(1, isbn)
.getSingleResult();

String title =
session.createNativeQuery("select title from Books where isbn = ?1", String.class)
.setParameter(1, isbn)
.getSingleResult();

However, in general, there isn’t enough information in the JDBC ResultSetMetaData to infer the mapping of columns to entity objects. So
for more complicated cases, you’ll need to use the @SqlResultSetMapping annotation to define a named mapping, and pass the name to
createNativeQuery(). This gets fairly messy, so we don’t want to hurt your eyes by showing you an example of it.

By default, Hibernate doesn’t flush the session before execution of a native query. That’s because the session is unaware of which
modifications held in memory would affect the results of the query.

So if there are any unflushed changes to Books, this query might return stale data:

List<Book> books =
session.createNativeQuery("select * from Books", Book.class)
.getResultList();

There’s two ways to ensure the persistence context is flushed before this query is executed.

Either, we could simply force a flush by calling flush() or by setting the flush mode to ALWAYS:

List<Book> books =
session.createNativeQuery("select * from Books", Book.class)
.setHibernateFlushMode (ALWAYS)
.getResultList();

Or, alternatively, we could tell Hibernate which modified state affects the results of the query:

List<Book> books =
session.createNativeQuery("select * from Books", Book.class)
.addSynchronizedentityClass(Book.class)
.getResultList();

You can call stored procedures using createStoredProcedureQuery() or createStoredProcedureCall().

80

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/query/QueryProducer.html#createNativeQuery(java.lang.String,java.lang.Class)
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/query/QueryProducer.html#createNativeMutationQuery(java.lang.String)
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/SharedSessionContract.html#createStoredProcedureCall(java.lang.String)

6.7. Restrictions and ordering

We’ve already seen how the JPA Criteria Query API can be used to construct a query completely programmatically. The Criteria APl is
powerful, but for the most common scenarios it’s at least arguably overkill. The CriteriaDefinition class helps a bit, but it doesn’t
completely eliminate the verbosity of programmatic query definition.

In Hibernate 7, there’s a new option, a very ergonomic API for programmatically adding restrictions or ordering to an existing query before
executing it. (Actually, the ordering part of this was introduced in Hibernate 6.5.) This new API:

* isn’t part of the Criteria Query API, and so we don’t need a CriteriaQuery object to make use of it,

« does make use of the JPA static metamodel for type safety,

« works with both HQL and Criteria queries, and

« is optimized for the case of a query which returns its single root entity.

var selection =

//
if

if

//

if

if

//
if

//

SelectionSpecification.create(Book.class,
// an optional base query, written in HQL:
"from Book where year(publicationDate) > 2000");

add programmatic restrictions:

(titlePattern != null)
selection.restrict(Restriction.like(Book_.title, namePattern));
(isbns != null && !isbns.isEmpty())
selection.restrict(Restriction.in(Book_.isbn, isbns));

add programmatic ordering:
(orderByTitle) selection.sort(Order.asc(Book_.title));

(orderByIsbn) selection.sort(Order.asc(Book_.isbn));

add programmatic association fetching:
(fetchPublisher) selection.fetch(Path.from(Book.class).to(Book_.publisher));

execute the query in the given session:

List<Book> matchingBooks = selection.createQuery(session).getResultList();

Notice that:

« TheRestriction interface has static methods for constructing a variety of different kinds of restriction in a completely typesafe way.

+ Similarly, the Order interface has a variety of static methods for constructing different kinds of sorting criteria.

We need the following methods of SelectionSpecification:

Table 6.4: Methods for query restriction and ordering

Method name Purpose

restrict() Add aRestriction on the query results

sort(), resort() Specify how the query results should be ordered

fetch() Add a fetched association Path

augment() Add a custom function which directly manipulates the select query

Two of these operations are also available for aMutationSpecification:

Table 6.5: Methods for mutation restriction

Method name Purpose

restrict() Add aRestriction on the records to be updated

augment () Add a custom function which directly manipulates the update or delete
query

Alternatively, Restriction and Order can be used with generated query or finder methods, and even with Jakarta Data repositories.

The interface Path may be used to express restrictions on fields of an embedded or associated entity class. It may even be used for

81

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/query/restriction/Restriction.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/query/Order.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/query/programmatic/SelectionSpecification.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/query/programmatic/MutationSpecification.html
https://docs.hibernate.org/orm/8.0/repositories/html_single/
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/query/restriction/Path.html

association fetching.

List<Book> booksForPublisher =
SelectionSpecification.create(Book.class)
.restrict(Path. from(Book.class).to(Book_.publisher).to(Publisher_.name)
.equalTo(publisherName))
.fetch(Path. from(Book.class).to(Book_.publisher))
.createQuery(session)
.getResultList();

Specifications aren’t for everything, however.

single "root" entity, possibly with some fetched associations. It’s not useful in cases where a query should return multiple

o SelectionSpecification (similar to its friend MutationSpecification) may be used in cases where a query returns a
entities, a projection of entity fields, or an aggregation. For such cases, the full Criteria APl is appropriate.

Finally, the augment () method deserves its own subsection.

6.8. Augmentation
When Restriction, Path, and Order aren’t expressive enough, we can augment the query by manipulating its representation as a criteria:

var books =
SelectionSpecification.create(Book.class)

.augment((builder, query, book) ->
// augment the query via JPA Criteria API
query.where(builder.like(book.get(Book_.title), titlePattern)))

.orderBy(builder.asc(book.get(Book_.isbn)))
.createQuery(session)
.getResultList();

For really advanced cases, augment () works quite nicely with CriteriaDefinition.

var books =
SelectionSpecification.create(Book.class)
.augment((builder, query, book) ->
// eliminate explicit references to 'builder'
new CriteriaDefinition<>(query) {{
where(like(entity.get(BasicEntity_.title), titlePattern),
greaterThan(book.get(Book_.pages), minPages));
orderBy(asc(book.get(Book_.isbn)));
1}
)

.createQuery(session)
.getResultList();

However, we emphasize that this API shines in cases where complex manipulations are not required. For complicated queries involving
multiple entities, or with aggregation and projection, you’re best off heading straight to the CriteriaBuilder.

Programmatic restrictions, and especially programmatic ordering, are often used together with pagination.

6.9. Limits and pagination

If a query might return more results than we can handle at one time, we may specify:

« alimit on the maximum number of rows returned, and,
« optionally, an offset, the first row of an ordered result set to return.

The offset is used to paginate query results.

There’s two ways to add a limit or offset to a HQL or native SQL query:

« using the syntax of the query language itself, for example, of fset 10 rows fetch next 20 rows only,or
¢ using the methods setFirstResult() and setMaxResults() of the SelectionQuery interface

If the limit or offset is parameterized, the second option is simpler. For example, this:

82

List<Book> books =
session.createSelectionQuery("from Book where title like ?1 order by title", Book.class)
.setParameter(1, titlePattern)
.setMaxResults(MAX_RESULTS)
.getResultList();

is simpler than:

// a worse way to do pagination
List<Book> books =
session.createSelectionQuery("from Book where title like ?1 order by title fetch first ?2 rows only", Book
.class)
.setParameter(1, titlePattern)
.setParameter(2, MAX_RESULTS)
.getResultList();

Hibernate’s SelectionQuery has a slightly different way to paginate the query results:

List<Book> books =
session.createSelectionQuery("from Book where title like ?1 order by title", Book.class)
.setParameter(1, titlePattern)
.setPage(Page. first(MAX_RESULTS))
.getResultList();

The getResultCount() method is useful for displaying the number of pages of results:

SelectionQuery<Book> query =
session.createSelectionQuery("from Book where title like ?1 order by title", Book.class)
.setParameter(1, titlePattern);
long results = query.getResultCount();
long pages = results / MAX_RESULTS + (results % MAX_RESULTS == 0 ? 0 : 1);
List<Book> books = query.setMaxResults(MAX_RESULTS).getResultList();

Table 6.6: Methods for query limits, pagination, and ordering

Method name Purpose JPA-standard
setMaxResults() Set a limit on the number of results returned by a query v
setFirstResult() Set an offset on the results returned by a query V4
setPage() Set the limit and offset by specifying a Page object b 4
getResultCount() Determine how many results the query would return in the absence of any b4

limit or offset

It’s quite common for pagination to be combined with the need to order query results by a field that’s determined at runtime. The Order
class we just met above provides the ability to specify that the query results should be ordered by one or more fields of the entity type
returned by the query:

List<Book> books =
session.createSelectionQuery("from Book where title like ?1", Book.class)
.setParameter(1, titlePattern)
.setOrder(List.of(Order.asc(Book_.title), Order.asc(Book_.isbn)))
. setMaxResults(MAX_RESULTS)
.getResultList();

The approach to pagination we’ve just seen is sometimes called offset-based pagination. Since Hibernate 6.5, there’s an alternative
approach, which offers some advantages, though it’s a little more difficult to use.

6.10. Key-based pagination

Key-based pagination aims to reduce the likelihood of missed or duplicate results when data is modified between page requests. It’s most
easily illustrated with an example:

83

String QUERY = "from Book where publicationDate > :minDate";

// obtain the first page of results
KeyedResultList<Book> first =
session.createSelectionQuery(QUERY, Book.class)
.setParameter("minDate", minDate)
.getKeyedResultList(Page.first(25)
.keyedBy(Order.asc(Book_.isbn)));
List<Book> firstPage = first.getResultList();

if (!firstPage.islLastPage()) {
// obtain the second page of results
KeyedResultList<Book> second =
session.createSelectionQuery(QUERY, Book.class)
.setParameter("minDate", minDate))
.getKeyedResultList(firstPage.getNextPage());
List<Book> secondPage = second.getResultlList();

The "key" in key-based pagination refers to a unique key of the result set which determines a total order on the query results. In this
example, Book. isbn is the key.

Since this code is a little bit fiddly, key-based pagination works best with generated query or finder methods.

6.11. Representing projection lists

A projection list is the list of things that a query returns, that is, the list of expressions in the select clause. Since Java has no tuple types,
representing query projection lists in Java has always been a problem for JPA and Hibernate. Traditionally, we’ve just used Object[] most
of the time:

var results =
session.createSelectionQuery("select isbn, title from Book", Object[].class)
.getResultList();

for (var result : results) {

var isbn = (String) result[0];
var title = (String) result[11];

This is really a bit ugly. Java’s record types now offer an interesting alternative:

record IsbnTitle(String isbn, String title) {}
var results =
session.createSelectionQuery("select isbn, title from Book", IsbnTitle.class)
.getResultList();
for (var result : results) {

var isbn = result.isbn();
var title = result.title();

Notice that we’re able to declare the record right before the line which executes the query.

This works just as well with queries written in SQL:

record BookInfo(String isbn, String title, int pages) {3}

List<BookInfo> resultList =
session.createNativeQuery("select title, isbn, pages from Book", BookInfo.class)
.getResultList();

Now, this approach is only superficially more typesafe, since the query itself is not checked statically, and so we can’t say it’s objectively

84

better. But perhaps you find it more aesthetically pleasing. And if we’re going to be passing query results around the system, the use of a

record type is much better.

The criteria query API offers a much more satisfying solution to the problem. Consider the following code:

var builder = sessionFactory.getCriteriaBuilder();
var query = builder.createTupleQuery();
var book = query.from(Book.class);
var bookTitle = book.get(Book_.title);
var bookIsbn = book.get(Book_.isbn);
var bookPrice = book.get(Book_.price);
query.select(builder.tuple(bookTitle, bookIsbn, bookPrice));
var resultList = session.createSelectionQuery(query).getResultList();
for (var result : resultList) {

String title = result.get(bookTitle);

String isbn = result.get(bookIsbn);

BigDecimal price = result.get(bookPrice);

This code is manifestly completely typesafe, and much better than we can hope to do with HQL.

6.12. Named queries

The @NamedQuery annotation lets us define a HQL query that is compiled and checked as part of the bootstrap process. This means we find
out about errors in our queries earlier, instead of waiting until the query is actually executed. We can place the @NamedQuery annotation on

any class, even on an entity class.

@NamedQuery(name = "10BooksByTitle",

query = "from Book where title like :titlePattern order by title fetch first 10 rows only")

class BookQueries {}

We have to make sure that the class with the @NamedQuery annotation will be scanned by Hibernate, either:

* by adding <class>org.hibernate.example.BookQueries</class>to persistence.xml, or

* by calling persistenceConfiguration.managedClass(BookQueries.class).

Unfortunately, JPA’s @NamedQuery annotation can’t be placed on a package descriptor. Therefore, Hibernate provides a
very similar annotation, @org.hibernate.annotations.NamedQuery which can be specified at the package level. If we

declare a named query at the package level, we must call:

configuration.addPackage("org.hibernate.example")

so that Hibernate knows where to find it.

The @NamedNativeQuery annotation lets us do the same for native SQL queries. There’s much less advantage to using @NamedNativeQuery,
because there is very little that Hibernate can do to validate the correctness of a query written in the native SQL dialect of your database.

Table 6.7: Executing named queries

Kind Session method EntityManager method

Selection createNamedSelectionQuery(String,Class) createNamedQuery (TypedQueryReference),
createNamedQuery(String,Class)

Mutation createNamedMutationQuery(String) createNamedQuery (TypedQueryReference),
createNamedQuery(String)

We execute our named query like this:

List<Book> books =
entityManager.createQuery(BookQueries_._10BooksByTitle_)
.setParameter("titlePattern", titlePattern)
.getResultList()

Query execution method

getResultlList(),
getSingleResult(),
getSingleResultOrNull()

executeUpdate()

85

Here, BookQueries_._10BooksByTitle_is an element of the JPA static metamodel of type TypedQueryReference<Book>, generated by
Hibernate Processor.

Note that the code which executes the named query is not aware of whether the query was written in HQL or in native SQL, making it
slightly easier to change and optimize the query later.

It’s nice to have our queries checked at startup time. It’s even better to have them checked at compile time. In Organizing persistence logic,
we mentioned that the Hibernate Processor can do that for us, with the help of the @heckHQL annotation, and we presented that as a
reason to use @amedQuery.

Actually, Hibernate even has a separate Query Validator capable of performing compile-time validation of HQL query
strings that occur as arguments to createQuery() and friends. If we use the Query Validator, there’s not much advantage
to the use of named queries.

We’re going to learn more about Hibernate Processor in the next chapter.

86

Chapter 7. Compile-time tooling

The static metamodel generator is a standard part of JPA. We've actually already seen its handiwork in the code examples earlier: it’s the
author of the class Book_, which contains the static metamodel of the entity class Book.

Hibernate comes with an annotation processor which does much more than just this. It’s capable of automatically generating:

« JPA metamodel classes, as we’ve already seen,

« Jakarta Data metamodel classes,

« static query methods and finder methods, and

« implementations of repository interfaces, including Jakarta Data repositories.

Hibernate Processor

Hibernate Processor, the annotation processor formerly known as the Metamodel Generator, began its life as a code generator for
what JPA calls a static metamodel. That is, it produces a typed model of the persistent classes in our program, giving us a type safe
way to refer to their attributes in Java code. In particular, it lets us specify entity graphs and criteria queries in a completely type-safe
way.

The history behind this thing is quite interesting. Back when Java’s annotation processing APl was brand spankin' new, the static
metamodel for JPA was proposed by Gavin King for inclusion in JPA 2.0, as a way to achieve type safety in the nascent criteria query
APL. It’s fair to say that, back in 2010, this APl was not a runaway success. Tools did not, at the time, feature robust support for
annotation processors. And all the explicit generic types made user code quite verbose and difficult to read. (The need for an explicit
reference to a CriteriaBuilder instance also contributed verbosity to the criteria API.) For years, Gavin counted this as one of his
more embarrassing missteps.

But time has been kind to the static metamodel. By now, all Java compilers, build tools, and IDEs have robust support for annotation
processing, and Java’s local type inference (the var keyword) eliminates the verbose generic types. JPA’s CriteriaBuilder and
EntityGraph APIs are still not quite perfect, but the imperfections aren’t related to static type safety or annotation processing. The
static metamodel itself is undeniably useful and elegant.

And it turns out that there was quite a lot of unlocked potential there. Since Hibernate 6.3 the Processor has started taking on a much
bigger role. Today, it even contains a complete implementation of the Jakarta Data specification.

Now, you still don’t have to use the Hibernate Processor with Hibernate—the APIs we just mentioned still also accept plain
strings—but we find that it works well with Gradle and integrates smoothly with our IDE, and the advantage in type-safety is
compelling.

We’ve already seen how to set up the annotation processor in the Gradle build we saw earlier. For more details on how to
integrate the Hibernate Processor, check out the Static Metamodel Generator section in the User Guide.

7.1. The static metamodel

We’ve already seen several ways to use the JPA static metamodel. Metamodel references are useful for expressing, in a completely type-
safe way:

« Criteria queries,

« eager fetching via an entity graph,

+ dynamic restriction and sorting, and

« references to named queries and named entity graphs.

Here’s an example of the sort of code that’s generated for an entity class, as mandated by the JPA specification:
Generated Code

@StaticMetamodel (Book.class)
public abstract class Book_ {

/*%

* @see org.example.Book#isbn
*%/

public static volatile SingularAttribute<Book, String> isbn;
VeSS

* @see org.example.Book#text
*%/

87

https://docs.hibernate.org/orm/8.0/repositories/html_single/#data-static-metamodel
https://docs.hibernate.org/orm/8.0/repositories/html_single/#repository-interfaces
https://hibernate.org/orm/processor/
https://jakarta.ee/specifications/persistence/3.2/jakarta-persistence-spec-3.2#a6072
https://docs.hibernate.org/orm/8.0/repositories/html_single/
https://docs.hibernate.org/orm/8.0/userguide/html_single/#tooling-modelgen

public static volatile SingularAttribute<Book,

/*%
* @see org.example.Book#title
*%/

public static volatile SingularAttribute<Book,

/*%
* @see org.example.Book#type
*%/

public static volatile SingularAttribute<Book,

/**
* @see org.example.Book#publicationDate
*%/

public static volatile SingularAttribute<Book,

/*%
* @see org.example.Book#publisher
*%/

public static volatile SingularAttribute<Book,

/*%

* @see org.example.Book#authors
*%/

String> text;

String> title;

Type> type;

LocalDate> publicationDate;

Publisher> publisher;

public static volatile SetAttribute<Book, Author> authors;

public static final String ISBN = "isbn";
public static final String TEXT = "text";
public static final String TITLE = "title";
public static final String TYPE = "type";

public static final String PUBLICATION_DATE =

'publicationDate";

public static final String PUBLISHER = "publisher";

public static final String AUTHORS = "authors"

For each attribute of the entity, the Book_ class has:

1. astring-valued constant like TITLE , and

2. atypesafe reference like title to a metamodel object of type Attribute.

The JPA static metamodel for an entity also contains members representing the named queries and named entity graphs declared by

Hibernate Processor allows statically-typed access to elements of the JPA Metamodel. But the Metamodel is also accessible

in a "reflective" way, via the EntityManagerFactory.

EntityType<Book> book = entityManagerFactory.getMetamodel().entity(Book.class);

SingularAttribute<Book,Long> id = book.getDeclaredId(Long.class)

This is very useful for writing generic code in frameworks or libraries. For example, you could use it to create your own

criteria query API.

@NamedQuery, @amedNativeQuery, and @amedEntityGraph annotations of the entity class.

For example, if we had:

@CheckHQL // validate named queries at compile time
@NamedQuery(name = "findBooksByTitle",
query = "from Book where title like :title order by title")

@Entity
class Book { ... }

Then we may execute the query as follows:

var books =

entityManager.createNamedQuery(Queries_._findBooksByTitle_)
.setParameter("title", titlePattern)

.setPage(page)

88

.getResultList();

Notice that no typecast was required here, since the generated code embeds the return type of the query as a type argument of the JPA
TypedQueryReference

/**

* @see #_findBooksByTitle_

*%/

public static final String QUERY_FIND_BOOKS_BY_TITLE = "findBooksByTitle";

/**

* The query named {@value QUERY_FIND_BOOKS_BY_TITLE}
* <pre>

* from Book where title like :title order by title
* </pre>

*

* @see org.example.Book

*%/

public static volatile TypedQueryReference<Book> _findBooksByTitle_;

Actually, Hibernate Processor doesn’t require that such annotations be applied to the entity class itself, as we already
saw earlier.

We’ve already been using metamodel references like Book_. authors and Book . AUTHORS in the previous chapters. So now let’s see what else
Hibernate Processor can do for us.

7.2. Finder methods, query methods, and repositories

Automatic generation of finder methods and query methods is a relatively new feature of Hibernate Processor—originally introduced as an
experiment—which ultimately grew into a whole new way to use Hibernate.

We’re going to meet three different kinds of generated method:

* a named query method has its signature and implementation generated directly from a @amedQuery annotation,

+ a query method has a signature that’s explicitly declared, and a generated implementation which executes a HQL or SQL query specified
via a @HQL or @SQL annotation, and

* afinder method annotated @Find has a signature that’s explicitly declared, and a generated implementation inferred from the
parameter list.

We’re also going to see two ways that these methods can be called:

» as static methods of a generated abstract class, or
+ as instance methods of an interface with a generated implementation which may even be injected.

Back in Organizing persistence logic, we walked you through a few different ways to organize your code with the help of Hibernate
Processor. That journey terminated at the idea of a repository, but we emphasized that you aren’t required to stay all the way to the end of
the line. Repositories are a sweet spot for many users, but they might not be your sweet spot, and that’s OK. Hibernate Processor is
perfectly happy to generate static implementations of @HQL, @SQL, and @Find methods, eliminating the need to inject or instantiate a
repository object.

Hibernate Processor and Jakarta Data

The functionality we’re about to describe was developed before Jakarta Data took on its current shape, and directly triggered the
apocalypse which lead to the final form of the specification. Therefore, there’s massive overlap between the functionality described
in this chapter, and the functionality available via the Jakarta Data annotations. On the other hand, Jakarta Data can’t do everything
described below, and in particular it doesn’t yet come with built-in support for stateful persistence contexts or reactive sessions.

We’ve therefore opted not to rewrite this chapter in a Jakarta Data-centric way, and instead refer you to Introducing Hibernate Data
Repositories for information about the standard Jakarta Data APIs.

As Jakarta Data matures, even more of this functionality might be made obsolete, at least in the form described here. We’re working
hard to make that happen.

é The functionality described in the rest of this chapter depends on the use of the annotations described in Entities.

89

https://docs.hibernate.org/orm/8.0/repositories/html_single/
https://docs.hibernate.org/orm/8.0/repositories/html_single/

Hibernate Processor is not currently able to generate finder methods and query methods for entities declared completely
in XML, and it’s not able to validate HQL which queries such entities. (On the other hand, the O/R mappings may be
specified in XML, since they’re not needed by the Processor.)

To whet our appetites, let’s see how it works for a @amedQuery.

7.3. Named queries and Hibernate Processor

The very simplest way to generate a query method is to put a @amedQuery annotation anywhere we like, with a name beginning with the
magical character #.

Let’s just stick it on the Book class:

@CheckHQL // validate the query at compile time
@NamedQuery(name = "#findByTitleAndType",
query = "select book from Book book where book.title like :title and book.type = :type")
@Entity
public class Book { ... %}

Now the Processor adds the following method declaration to the metamodel class Book_.
Generated Code

/*%
* Execute named query {@value #QUERY_FIND_BY_TITLE_AND_TYPE} defined by annotation of {@link Book}.
*%/
public static List<Book> findByTitleAndType(@Nonnull EntityManager entityManager, String title, Type type) {
return entityManager.createNamedQuery(QUERY_FIND_BY_TITLE_AND_TYPE)
.setParameter("title", title)
.setParameter("type", type)
.getResultList();

We can easily call this method from wherever we like, as long as we have access to an EntityManager:

List<Book> books =
Book_.findByTitleAndType(entityManager, titlePattern, Type.BOOK);

Now, this is quite nice, but it’s a bit inflexible in various ways, and so this probably isn’t the best way to generate a query method.

7.4. Generated query methods

The principal problem with generating the query method straight from the @NamedQuery annotation is that it doesn’t let us explicitly specify
the return type or parameter list. In the case we just saw, Hibernate Processor does a reasonable job of inferring the query return type and
parameter types, but we’re often going to need a bit more control.

The solution is to write down the signature of the query method explicitly, as an abstract method in Java. We’ll need a place to put this
method, and since our Book entity isn’t an abstract class, we’ll just introduce a new interface for this purpose:

interface Queries {
@HOL("where title like :title and type = :type")
List<Book> findBooksByTitleAndType(String title, String type);

Instead of @NamedQuery, which is a type-level annotation, we specify the HQL query using the new @HQL annotation, which we place directly
on the query method. This results in the following generated code in the Queries_ class:

Generated Code

@StaticMetamodel(Queries.class)
public abstract class Queries_ {

/*%

* Execute the query {@value #FIND_BOOKS_BY_TITLE_AND_TYPE_String_Type}.
*

* @see org.example.Queries#findBooksByTitleAndType(String,Type)
*%/

90

public static List<Book> findBooksByTitleAndType(@Nonnull EntityManager entityManager, String title, Type type) {
return entityManager.createQuery(FIND_BOOKS_BY_TITLE_AND_TYPE_String_Type, Book.class)
.setParameter("title", title)
.setParameter("type", type)
.getResultList();

static final String FIND_BOOKS_BY_TITLE_AND_TYPE_String_Type =
"where title like :title and type = :type";

Notice that the signature differs just slightly from the one we wrote down in the Queries interface: the Processor has prepended a
parameter accepting EntityManager to the parameter list.

If we want to explicitly specify the name and type of this parameter, we may declare it explicitly:

interface Queries {
@HQL("where title like :title and type = :type")
List<Book> findBooksByTitleAndType(StatelessSession session, String title, String type);

Hibernate Processor defaults to using EntityManager as the session type, but other types are allowed:

* Session,
* StatelessSession, or

* Mutiny.Session orMutiny.StatelessSession from Hibernate Reactive.

The real value of all this is in the checks which can now be done at compile time. Hibernate Processor verifies that the parameters of our
abstract method declaration match the parameters of the HQL query, for example:

« for anamed parameter :alice, there must be a method parameter named alice with exactly the same type, or
« for an ordinal parameter ?2, the second method parameter must have exactly the same type.

The query must also be syntactically legal and semantically well-typed, that is, the entities, attributes, and functions referenced in the
query must actually exist and have compatible types. Hibernate Processor determines this by inspecting the annotations of the entity
classes at compile time.

The @CheckHQL annotation which instructs Hibernate to validate named queries is not necessary for query methods
annotated @HQL.

The @HQL annotation has a friend named @SQL which lets us specify a query written in native SQL instead of in HQL. In this case there’s a lot
less the Processor can do to check that the query is legal and well-typed.

We imagine you’re wondering whether a static method is really the right thing to use here.

7.5. Generating query methods as instance methods

One thing not to like about what we’ve just seen is that we can’t transparently replace a generated static function of the Queries_ class
with an improved handwritten implementation without impacting clients. Now, if our query is only called in one place, which is quite
common, this isn’t going to be a big issue, and so we’re inclined to think the static function is fine.

But if this function is called from many places, it’s probably better to promote it to an instance method of some class or interface.
Fortunately, this is straightforward.

All we need to do is add an abstract getter method for the session object to our Queries interface. (And remove the session from the method
parameter list.) We may call this method anything we like:

interface Queries {
EntityManager entityManager();

@HQL("where title like :title and type = :type")
List<Book> findBooksByTitleAndType(String title, String type);

Here we’ve used EntityManager as the session type, but other types are allowed, as we saw above.

91

Now Hibernate Processor does something a bit different:
Generated Code

@StaticMetamodel(Queries.class)
public class Queries_ implements Queries {

private final @onnull EntityManager entityManager;

public Queries_(@Nonnull EntityManager entityManager) {
this.entityManager = entityManager;

public @onnull EntityManager entityManager() {
return entityManager;

/*%

* Execute the query {@value #FIND_BOOKS_BY_TITLE_AND_TYPE_String_Typel.

*

* @see org.example.Queries#findBooksByTitleAndType(String,Type)

*%/

@Override

public List<Book> findBooksByTitleAndType(String title, Type type) {

return entityManager.createQuery(FIND_BOOKS_BY_TITLE_AND_TYPE_String_Type, Book.class)

.setParameter("title", title)
.setParameter("type", type)
.getResultList();

static final String FIND_BOOKS_BY_TITLE_AND_TYPE_String_Type =
"where title like :title and type = :type";

The generated class Queries_ now implements the Queries interface, and the generated query method implements our abstract method
directly.

Of course, the protocol for calling the query method has to change:

Queries queries = new Queries_(entityManager);
List<Book> books = queries.findByTitleAndType(titlePattern, Type.BOOK);

If we ever need to swap out the generated query method with one we write by hand, without impacting clients, all we need to do is replace
the abstract method with a default method of the Queries interface. For example:

interface Queries {
EntityManager entityManager();

// handwritten method replacing previous generated implementation
default List<Book> findBooksByTitleAndType(String title, String type) {
entityManager()
.createQuery("where title like :title and type = :type", Book.class)
.setParameter("title", title)
.setParameter("type", type)
.setFlushMode (COMMIT)
.setMaxResults(100)
.getResultList();

What if we would like to inject a Queries object instead of calling its constructor directly?

92

As you recall, we don’t think these things really need to be container-managed objects. But if you want them to be—if
you’re allergic to calling constructors, for some reason—then:

* placing jakarta.inject on the build path will cause an @Inject annotation to be added to the constructor of
Queries_, and

« placing jakarta.enterprise.context on the build path will cause a @ependent annotation to be added to the
Queries_ class.

Thus, the generated implementation of Queries will be a perfectly functional CDI bean with no extra work to be done.

Is the Queries interface starting to look a lot like a DAO-style repository object? Well, perhaps. You can certainly decide to use this facility to
create a BookRepository if that’s what you prefer. But unlike a repository, our Queries interface:

« doesn’t attempt to hide the EntityManager from its clients,

« doesn’timplement or extend any framework-provided interface or abstract class, at least not unless you want to create such a
framework yourself, and

« isn’t restricted to service a particular entity class.

We can have as many or as few interfaces with query methods as we like. There’s no one-one-correspondence between these interfaces and
entity types. This approach is so flexible that we don’t even really know what to call these "interfaces with query methods".

7.6. Generated finder methods

At this point, one usually begins to question whether it’s even necessary to write a query at all. Would it be possible to just infer the query
from the method signature?

In some simple cases it’s indeed possible, and this is the purpose of finder methods. A finder method is a method annotated @Find. For
example:

@Find
Book getBook(String isbn);

A finder method may have multiple parameters:

@Find
List<Book> getBooksByTitle(String title, Type type);

The name of the finder method is arbitrary and carries no semantics. But:

« the return type determines the entity class to be queried, and
« the parameters of the method must match the fields of the entity class exactly, by both name and type.

Considering our first example, Book has a persistent field String isbn, so this finder method is legal. If there were no field named isbn in
Book, or if it had a different type, this method declaration would be rejected with a meaningful error at compile time. Similarly, the second
example is legal, since Book has fields String title and Type type.

You might notice that our solution to this problem is very different from the approach taken by others. In DAO-style
repository frameworks, you’re asked to encode the semantics of the finder method into the name of the method. This idea
came to Java from Ruby, and we think it doesn’t belong here. It’s completely unnaturalin Java, and by almost any

o measure other than counting characters it’s objectively worse than just writing the query in a string literal. At least string
literals accommodate whitespace and punctuation characters. Oh and, you know, it’s pretty useful to be able to rename a
finder method without changing its semantics.

The code generated for this finder method depends on what kind of fields match the method parameters:

@Id field Uses EntityManager.find()
All @Naturalld fields Uses Session.byNaturalId()
Other persistent fields, or a mix of field types Uses a criteria query

The generated code also depends on what kind of session we have, since the capabilities of stateless sessions, and of reactive sessions,
differ slightly from the capabilities of regular stateful sessions.

With EntityManager as the session type, we obtain:

93

VEZS

* Find {@link Book} by {@link Book#isbn isbn}.

*

* @see org.example.Dao#getBook(String)

*%/

@verride

public Book getBook(@Nonnull String isbn) {
return entityManager.find(Book.class, isbn);

/**
* Find {@link Book} by {@link Book#title title} and {@link Book#type type}.
*
* @see org.example.Dao#getBooksByTitle(String, Type)
*%/
@Override
public List<Book> getBooksByTitle(String title, Type type) {
var builder = entityManager.getEntityManagerFactory().getCriteriaBuilder();
var query = builder.createQuery(Book.class);
var entity = query.from(Book.class);
query.where(
title==null
? entity.get(Book_.title).isNull()
: builder.equal(entity.get(Book_.title), title),
type==null
? entity.get(Book_.type).isNull()
: builder.equal(entity.get(Book_.type), type)
)z

return entityManager.createQuery(query).getResultList();

It’s even possible to match a parameter of a finder method against a property of an associated entity or embeddable. The natural syntax
would be a parameter declaration like String publisher.name, but because that’s not legal Java, we can write it as String publisher$name,
taking advantage of a legal Java identifier character that nobody ever uses for anything else:

@Find
List<Book> getBooksByPublisherName(String publisher$name);

The @Pattern annotation may be applied to a parameter of type String, indicating that the argument is a wildcarded pattern which will be
compared using like.

@Find
List<Book> getBooksByTitle(@Pattern String title, Type type);

Even better, a parameter may be of type Range<T>, where P is the type of the matching field.

@Find
List<Book> getBooksByTitle(Range<String> title, Type type);

The Range interface has a variety of static methods the caller may use to construct different kinds of ranges. For example, Range. pattern()
constructs a Range representing a pattern.

List<Book> books =
// returns books with titles beginning with "hibernate"
queries.getBooksByTitle(Range.prefix("hibernate", false), type);

A finder method may specify fetch profiles, for example:

@Find(namedFetchProfiles=Book_.FETCH_WITH_AUTHORS)
Book getBookWithAuthors(String isbn);

This lets us declare which associations of Book should be pre-fetched by annotating the Book class.

94

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/query/range/Range.html

7.7. Paging, ordering, and restrictions

Optionally, a query method—or a finder method which returns multiple results—may have additional "magic" parameters which do not
map to query parameters:

Parameter type Purpose Example argument
Page Specifies a page of query results Page.first(20)
Order<? super E> Specifies an entity attribute to order by, if R is the entity type returned ~ Order.asc(Book_.title)
by the query
List<Order? super E> Specifies entity attributes to order by, if R is the entity type returned List.of(Order.asc(Book_.title),
(orvarargs) by the query Order.asc(Book_.isbn))
Order<Object[1> Specifies a column to order by, if the query returns a projection list Order.asc(1)
List<Object[]> Specifies columns to order by, if the query returns a projection list List.of(Order.asc(1), Order.desc(2))
(orvarargs)
Restriction<? super E> Specifies a restriction used to filter query results Restriction.startsWith("Hibernate")

Thus, if we redefine our earlier query method as follows:

interface Queries {
@HQL("from Book where title like :title and type = :type")
List<Book> findBooksByTitleAndType(String title, Type type,
Page page, Order<? super Book>... order);

Then we can call it like this:

List<Book> books =
Queries_.findBooksByTitleAndType(entityManager, titlePattern, Type.BOOK,
Page.page (RESULTS_PER_PAGE, page), Order.asc(Book_.isbn));

Alternatively, we could have written this query method as a finder method:

interface Queries {
@Find
List<Book> getBooksByTitle(String title, Type type,
Page page, Order<? super Book>... order);

Similarly, we may define a query method which accepts an arbitrary Restriction:

interface Queries {
@Find
List<Book> findBooks(Restriction<? super Book> restriction, Order<? super Book>... order);

As we saw earlier, the Restriction interface has a variety of static methods for constructing restrictions.

List<Book> books =
// returns books with titles beginning with "hibernate", sorted by title
queries.findBooks(Restriction.startsWith(Book_.title, "hibernate", false),
Order.asc(Book_.title));

This gives some dynamic control over query execution. We’ll see below that it’s even possible for the caller to gain direct control over the
Query object.

7.8. Key-based pagination

A generated query or finder method can make use of key-based pagination.

95

@Query("where publicationDate > :minDate")
KeyedResultList<Book> booksFromDate(Session session, LocalDate minDate, KeyedPage<Book> page);

Note that this method:

* accepts aKeyedPage, and
e returns KeyedResultList.

Such a method may be used like this:

// obtain the first page of results
KeyedResultList<Book> first =
Queries_.booksFromDate(session, minDate,
Page.first(25).keyedBy(Order.asc(Book_.isbhn)));
List<Book> firstPage = first.getResultList();

if (!firstPage.islLastPage()) {
// obtain the second page of results
KeyedResultList<Book> second =
Queries_.booksFromDate(session, minDate,
firstPage.getNextPage());
List<Book> secondPage = second.getResultList();

7.9. Query and finder method return types
A query method doesn’t need to return List. It might return a single Book.

@HQL("where isbn = :isbn")
Book findBookByIsbn(String isbn);

For a query with a projection list, Object[] or List<Object[]> is permitted:

@HQL("select isbn, title from Book where isbn = :isbn")
Object[] findBookAttributesByIsbn(String isbn);

But when there’s just one item in the select list, the type of that item should be used:

@HQL("select title from Book where isbn = :isbn")
String getBookTitleByIsbn(String isbn);

@HQL("select local datetime")
LocalDateTime getServerDateTime();

A query which returns a selection list may have a query method which repackages the result as a record, as we saw in Representing
projection lists.

record IsbnTitle(String isbn, String title) {}

@HQL("select isbn, title from Book")
List<IsbnTitle> listIsbnAndTitleForEachBook(Page page);

A query method might even return TypedQuery or SelectionQuery:

@HOL("where title like :title")
SelectionQuery<Book> findBooksByTitle(String title);

This is extremely useful at times, since it allows the client to further manipulate the query:
List<Book> books =

Queries_.findBooksByTitle(entityManager, titlePattern)
.setOrder(Order.asc(Book_.title)) // order the results

96

.setPage(Page.page (RESULTS_PER_PAGE, page)) // return the given page of results
. setFlushMode (FlushModeType . COMMIT) // don't flush session before query execution
.setReadOnly(true) // load the entities in read-only mode
.setCacheStoreMode (CacheStoreMode . BYPASS) // don't cache the results
.setComment("Hello world!") // add a comment to the generated SQL
.getResultList();
An insert, update, or delete query must return int, boolean, or void.

@HQL("delete from Book")

int deleteAllBooks();

@HQL("update Book set discontinued = true where discontinued = false and isbn = :isbn")

boolean discontinueBook(String isbn);

@HQL("update Book set discontinued = true where isbn = :ishn")

void discontinueBook(String isbn);

On the other hand, finder methods are currently much more limited. A finder method must return an entity type like Book, or a list of the

entity type, List<Book>, for example.

o As you might expect, for a reactive session, all query methods and finder methods must return Uni.

7.10. An alternative approach

What if you just don’t like the ideas we’ve presented in this chapter, preferring to call the Session or EntityManager directly, but you still
want compile-time validation for HQL? Or what if you do like the ideas, but you’re working on a huge existing codebase full of code you

don’t want to change?

Well, there’s a solution for you, too. The Query Validator is a separate annotation processor that’s capable of type-checking HQL strings, not

only in annotations, but even when they occur as arguments to createQuery(), createSelectionQuery(), or createMutationQuery(). It’s

even able to check calls to setParameter(), with some restrictions.

The Query Validator works in javac, Gradle, Maven, and the Eclipse Java Compiler.

Unlike Hibernate Processor, which is a completely bog-standard Java annotation processor based on only standard Java
é APIs, the Query Validator makes use of internal compiler APIs in javac and ecj. This means it can’t be guaranteed to work

in every Java compiler. The current release is known to work in JDK 11 and above, though JDK 15 or above is preferred.

97

https://github.com/hibernate/query-validator/

Chapter 8. Tuning and performance

Once you have a program up and running using Hibernate to access the database, it’s inevitable that you’ll find places where performance
is disappointing or unacceptable.

Fortunately, most performance problems are relatively easy to solve with the tools that Hibernate makes available to you, as long as you
keep a couple of simple principles in mind.

First and most important: the reason you’re using Hibernate is that it makes things easier. If, for a certain problem, it’s making things
harder, stop using it. Solve this problem with a different tool instead.

o Just because you’re using Hibernate in your program doesn’t mean you have to use it everywhere.

Second: there are two main potential sources of performance bottlenecks in a program that uses Hibernate:

« too many round trips to the database, and
« memory consumption associated with the first-level (session) cache.

So performance tuning primarily involves reducing the number of accesses to the database, and/or controlling the size of the session cache.

But before we get to those more advanced topics, we should start by tuning the connection pool.

8.1. Tuning the connection pool

The connection pool built in to Hibernate is suitable for testing, but isn’t intended for use in production. Instead, Hibernate supports several
different connection pools, including our favorite, Agroal.

Hibernate will automatically make use of AgroalConnectionProvider if the module org.hibernate.orm:hibernate-agroal is available at
runtime. So just add it as a runtime dependency, and you’re all set.

Well, actually, that’s a bit fragile, since Hibernate silently falls back to using the default connection pool if Agroal happens to be missing at
runtime. Perhaps it’s better to set this configuration property:

Configuration property name Purpose

hibernate.connection.provider_class Explicitly specify a connection pool, for example, agroal, hikaricp or c3p@.

You can set hibernate.connection.provider_class to agroal so that Hibernate fails at startup if Agroal is missing.

To properly configure Agroal, you’ll need to set some extra configuration properties, in addition to the settings we already saw in Basic
configuration settings. Properties with the prefix hibernate.agroal are passed through to Agroal:

configure Agroal connection pool

There are many to choose from, as enumerated by AgroalSettings:

Table 8.2: Settings for configuring Agroal

Configuration property name Purpose

hibernate.agroal.maxSize The maximum number of connections present on the pool

hibernate.agroal.minSize The minimum number of connections present on the pool

hibernate.agroal.initialSize The number of connections added to the pool when it is started

hibernate.agroal.maxLifetime The maximum amount of time a connection can live, after which it is removed from the
pool

hibernate.agroal.acquisitionTimeout The maximum amount of time a thread can wait for a connection, after which an

exception is thrown instead

98

https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/cfg/JdbcSettings.html#CONNECTION_PROVIDER
https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/engine/jdbc/connections/spi/ConnectionProvider.html
https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/cfg/AgroalSettings.html

Configuration property name Purpose

hibernate.agroal.reapTimeout The duration for eviction of idle connections
hibernate.agroal.leakTimeout The duration of time a connection can be held without causing a leak to be reported
hibernate.agroal.idleValidationTimeout Aforeground validation is executed if a connection has been idle on the pool for longer

than this duration
hibernate.agroal.validationTimeout The interval between background validation checks

hibernate.agroal.initialSql A SQL command to be executed when a connection is created

The following settings are common to all connection pools supported by Hibernate:

Table 8.3: Common settings for connection pools

hibernate.connection.pool_size The size of the connection pool
hibernate.connection.autocommit The default autocommit mode
hibernate.connection.isolation The default transaction isolation level

A popular alternative to Agroal is HikariCP. Integration with HikariCP is provided by the module org.hibernate.orm:hibernate-hikaricp. Its
settings are enumerated by HikariCPSettings.

Container-managed datasources

In a container environment, you usually don’t need to configure a connection pool through Hibernate. Instead, you’ll use a container-
managed datasource, as we saw in Basic configuration settings.

Arelated important setting is the default JDBC fetch size.

8.2. JDBC fetch size

The JDBC fetch size controls the maximum number of rows the JDBC driver fetches from the database in one round trip. In Hibernate we
usually limit query result sets using pagination, and so we almost always prefer that the JDBC driver fetch the whole query result set in one
trip. Most JDBC drivers accommodate this usage pattern by not setting a default fetch size. However, there are a couple of exceptions to this
and for the offending drivers you should probably override the default fetch size using the following configuration property.

Table 8.4: Default JDBC fetch size

hibernate. jdbc.fetch_size The default JDBC fetch size

The default fetch size can be overridden for a given query by calling setFetchSize(), but this is rarely necessary.

The Oracle JDBC driver defaults to a JDBC fetch size of 10. You should always set hibernate. jdbc. fetch_size explicitly if
you’re using Oracle, or, even better, specify the parameter defaultRowPrefetch in the JDBC connection URL.

The MySQL JDBC driver ignores the fetch size by default. The JDBC connection property useCursorFetch=true enables the
use of server-side cursors, and with this setting the driver respects the fetch size.

8.3. Enabling statement batching

An easy way to improve performance of some transactions, with almost no work at all, is to turn on automatic DML statement batching.
Batching only helps in cases where a program executes many inserts, updates, or deletes against the same table in a single transaction.

All we need to do is set a single property:

Table 8.5: Enabling JDBC batching

99

https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/cfg/JdbcSettings.html#POOL_SIZE
https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/cfg/JdbcSettings.html#AUTOCOMMIT
https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/cfg/JdbcSettings.html#ISOLATION
https://github.com/brettwooldridge/HikariCP
https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/cfg/HikariCPSettings.html
https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/cfg/JdbcSettings.html#STATEMENT_FETCH_SIZE
https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/query/SelectionQuery.html#setFetchSize(int)

Configuration property name Purpose Alternative

hibernate. jdbc.batch_size Maximum batch size for SQL statement batching setJdbcBatchSize()

To confirm that statement batching is working, enable TRACE-level logging for the category org.hibernate.orm. jdbc.batch.

That said, batching is rarely the most convenient or most efficient way to update or delete many rows at once.

Even better than DML statement batching is the use of HQL update or delete queries, or even native SQL that calls a
stored procedure!

8.4. Association fetching

Achieving high performance in ORM means minimizing the number of round trips to the database. This goal should be uppermost in your
mind whenever you’re writing data access code with Hibernate. The most fundamental rule of thumb in ORM is:

« explicitly specify all the data you’re going to need right at the start of a session/transaction, and fetch it immediately in one or two
queries,

« and only then start navigating associations between persistent entities.

Execute queries,
Join Pe,‘tching
whole_ gmph

End tronsaction,
close, session

Open session,
l:egin transaction

A/avigate ob:)ec‘t groph
and mool?&/ data

Without question, the most common cause of poorly-performing data access code in Java programs is the problem of N+1 selects. Here, a
list of N rows is retrieved from the database in an initial query, and then associated instances of a related entity are fetched using N
subsequent queries.

you, the developer, can solve this problem, because only you know ahead of time what data you’re going to need in a

o Thisisn’t a bug or limitation of Hibernate; this problem even affects typical handwritten JDBC code behind DAOs. Only
given unit of work. But that’s OK. Hibernate gives you all the tools you need.

In this section we’re going to discuss different ways to avoid such "chatty" interaction with the database.
Hibernate provides several strategies for efficiently fetching associations and avoiding N+1 selects:

* outer join fetching—where an association is fetched using a left outer join,
« batch fetching—where an association is fetched using a subsequent select with a batch of primary keys, and
* subselect fetching—where an association is fetched using a subsequent select with keys re-queried in a subselect.

Of these, you should almost always use outer join fetching. But let’s consider the alternatives first.
8.5. Batch fetching and subselect fetching
Consider the following code:

List<Book> books =
session.createSelectionQuery("from Book order by isbn", Book.class)
.getResultList();
books. forEach(book -> book.getAuthors().forEach(author -> out.println(book.title + " by " + author.name)));

100

https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/cfg/BatchSettings.html#STATEMENT_BATCH_SIZE

This code is very inefficient, resulting, by default, in the execution of N+1 select statements, where N is the number of Books.

Let’s see how we can improve on that.
SQL for batch fetching
With batch fetching enabled, Hibernate might execute the following SQL on PostgreSQL:

/* initial query for Books */

select b1_0.isbn,b1_0.price,b1_0.published,b1_0.publisher_id,b1_0.title
from Book b1_0

order by b1_0.isbn

/* first batch of associated Authors =*/
select al_0.books_isbn,al_1.id,al_1.bio,al_1.name
from Book_Author al_@

join Author al_1 on al_1.id=al1_0.authors_id
where a1_0.books_isbn = any (?)

/* second batch of associated Authors */
select al_0.books_isbn,al_1.id,al_1.bio,al_1.name
from Book_Author al_@

join Author al_1 on al_1.id=a1_0.authors_id
where al1_0.books_isbn = any (?)

The first select statement queries and retrieves Books. The second and third queries fetch the associated Authors in batches. The number of
batches required depends on the configured batch size. Here, two batches were required, so two SQL statements were executed.

The SQL for batch fetching looks slightly different depending on the database. Here, on PostgreSQL, Hibernate passes a
batch of primary key values as a SQL ARRAY.

SQL for subselect fetching
On the other hand, with subselect fetching, Hibernate would execute this SQL:

/* initial query for Books =*/

select b1_0.isbn,b1_0.price,b1_0.published,bl1_0.publisher_id,b1_0.title
from Book b1_0

order by b1_0.isbn

/* fetch all associated Authors */
select al_0.books_isbn,al_1.id,al_1.bio,al_1.name
from Book_Author al_0
join Author al_1 on al_1.id=a1_0.authors_id
where al_0.books_isbn in (select b1_0.isbn from Book b1_0)

Notice that the first query is re-executed in a subselect in the second query. The execution of the subselect is likely to be relatively
inexpensive, since the data should already be cached by the database. Clever, huh?

Enabling the use of batch or subselect fetching

Both batch fetching and subselect fetching are disabled by default, but we may enable one or the other globally using properties.

Table 8.6: Configuration settings to enable batch and subselect fetching

Configuration property name Property value Alternatives
hibernate.default_batch_fetch_size A sensible batch size >1 to enable batch fetching @BatchSize(), setFetchBatchSize()
hibernate.use_subselect_fetch true to enable subselect fetching @Fetch(SUBSELECT),

setSubselectFetchingEnabled()

Alternatively, we can enable one or the other in a given session:

session.setFetchBatchSize(5);
session.setSubselectFetchingEnabled(true);

101

We may request subselect fetching more selectively by annotating a collection or many-valued association with the
@Fetch annotation.

@anyToMany @Fetch(SUBSELECT)
Set<Author> authors;

Note that @Fetch(SUBSELECT) has the same effect as @Fetch(SELECT), except after execution of a HQL or criteria query. But
after query execution, @Fetch(SUBSELECT) is able to much more efficiently fetch associations.

Later, we’ll see how we can use fetch profiles to do this even more selectively.

That’s all there is to it. Too easy, right?

Sadly, that’s not the end of the story. While batch fetching might mitigate problems involving N+1 selects, it won’t solve them. The truly
correct solution is to fetch associations using joins. Batch fetching (or subselect fetching) can only be the best solution in rare cases where
outer join fetching would result in a cartesian product and a huge result set.

But batch fetching and subselect fetching have one important characteristic in common: they can be performed lazily. This is, in principle,
pretty convenient. When we query data, and then navigate an object graph, lazy fetching saves us the effort of planning ahead. It turns out
that this is a convenience we’re going to have to surrender.

8.6. Join fetching

Outer join fetching is usually the best way to fetch associations, and it’s what we use most of the time. Unfortunately, by its very nature, join
fetching simply can’t be lazy. So to make use of join fetching, we must plan ahead. Our general advice is:

Avoid the use of lazy fetching, which is often the source of N+1 selects.

Now, we’re not saying that associations should be mapped for eager fetching by default! That would be a terrible idea, resulting in simple
session operations that fetch almost the entire database. Therefore:

Most associations should be mapped for lazy fetching by default.

It sounds as if this tip is in contradiction to the previous one, but it’s not. It’s saying that you must explicitly specify eager fetching for
associations precisely when and where they are needed.

If we need eager join fetching in some particular transaction, we have four different ways to specify that.

Passing a JPAEntityGraph We’ve already seen this in Entity graphs and eager fetching
Specifying a named fetch profile We’ll discuss this approach later in Named fetch profiles
Using left join fetchin HQL/JPQL See A Guide to Hibernate Query Language for details

Using From. fetch() in a criteria query Same semantics as join fetchin HQL

Typically, a query is the most convenient option. Here’s how we can ask for join fetching in HQL:

List<Book> booksWithJoinFetchedAuthors =
session.createSelectionQuery("from Book join fetch authors order by isbn")
.getResultList();

And this is the same query, written using the criteria API:

var builder = sessionFactory.getCriteriaBuilder();

var query = builder.createQuery(Book.class);

var book = query.from(Book.class);

book . fetch(Book_.authors);

query.select(book);

query.orderBy(builder.asc(book.get(Book_.isbn)));

List<Book> booksWithJoinFetchedAuthors =
session.createSelectionQuery(query).getResultlList();

Either way, a single SQL select statement is executed:

102

https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/annotations/Fetch.html
https://docs.hibernate.org/orm/8.0/querylanguage/html_single/

select b1_0.isbn,al_0.books_isbn,al_1.id,al_1.bio,al1_1.name,b1_0.price,b1_0.published,b1_0.publisher_id,b1_0.title
from Book b1_0
join (Book_Author al1_0 join Author al_1 on al_1.id=al_0.authors_id)
on b1_0.isbn=a1_0.books_isbn
order by b1_0.isbn

Much better!

Join fetching, despite its non-lazy nature, is clearly more efficient than either batch or subselect fetching, and this is the source of our
recommendation to avoid the use of lazy fetching.

There’s one interesting case where join fetching becomes inefficient: when we fetch two many-valued associations in
parallel. Imagine we wanted to fetch both Author.books and Author. royaltyStatements in some unit of work. Joining
both collections in a single query would result in a cartesian product of tables, and a large SQL result set. Subselect
fetching comes to the rescue here, allowing us to fetch books using a join, and royaltyStatements using a single
subsequent select.

Of course, an alternative way to avoid many round trips to the database is to cache the data we need in the Java client. If we’re expecting to
find the associated data in a local cache, we probably don’t need join fetching at all.

But what if we can’t be certain that all associated data will be in the cache? In that case, we might be able to reduce the
cost of cache misses by enabling batch fetching.

8.7. The second-level cache

A classic way to reduce the number of accesses to the database is to use a second-level cache, allowing data cached in memory to be
shared between sessions.

By nature, a second-level cache tends to undermine the ACID properties of transaction processing in a relational database. We don’t use a
distributed transaction with two-phase commit to ensure that changes to the cache and database happen atomically. So a second-level
cache is often by far the easiest way to improve the performance of a system, but only at the cost of making it much more difficult to reason
about concurrency. And so the cache is a potential source of bugs which are difficult to isolate and reproduce.

Therefore, by default, an entity is not eligible for storage in the second-level cache. We must explicitly mark each entity that will be stored in
the second-level cache with the @Cache annotation from org.hibernate.annotations.

But that’s still not enough. Hibernate does not itself contain an implementation of a second-level cache, so it’s also necessary to configure
an external cache provider.

Caching is disabled by default. To minimize the risk of data loss, we force you to stop and think before any entity goes
into the cache.

Hibernate segments the second-level cache into named regions, one for each:

« mapped entity hierarchy or
« collection role.

For example, there might be separate cache regions for Author, Book, Author . books, and Book . authors.
Each region is permitted its own policies for expiry, persistence, and replication. These policies must be configured externally to Hibernate.

The appropriate policies depend on the kind of data an entity represents. For example, a program might have different caching policies for
"reference" data, for transactional data, and for data used for analytics. Ordinarily, the implementation of those policies is the
responsibility of the underlying cache implementation.

The second-level cache is never aware of any changes to data which are made externally to Hibernate. Updates made via
direct JDBC—or by some other program—are never visible in the second-level cache. When such updates occur, we might
need to explicitly invalidate cached data. Alternatively, in cases where the program is able to tolerate somewhat stale
data, an expiry policy might be an acceptable solution.

8.8. Specifying which data is cached

By default, no data is eligible for storage in the second-level cache.

An entity hierarchy or collection role may be assigned a region using the @Cache annotation. If no region name is explicitly specified, the
region name is just the name of the entity class or collection role.

103

https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/annotations/Cache.html

@Entity
@Cache(usage=NONSTRICT_READ_WRITE, region="Publishers")
class Publisher {

@Cache(usage=READ_WRITE, region="PublishedBooks")
@0OneToMany (mappedBy=Book_.PUBLISHER)
Set<Book> books;

The cache defined by a @Cache annotation is automatically utilized by Hibernate to:

« retrieve an entity by id when find() is called, or
« to resolve an association by id.

A

subclass entity.

The @Cache annotation must be specified on the root class of an entity inheritance hierarchy. It’s an error to place iton a

The @Cache annotation always specifies a CacheConcurrencyStrategy, a policy governing access to the second-level cache by concurrent

transactions.

Table 8.8: Cache concurrency

Concurrency policy Interpretation

READ_ONLY » Immutable data
« Read-only access

NONSTRICT_READ_WRITE « Concurrent updates are extremely
improbable

« Read/write access with no locking

READ_WRITE « Concurrent updates are possible but
not common
« Read/write access using soft locks
TRANSACTIONAL « Concurrent updates are frequent

« Transactional access

104

Explanation

Indicates that the cached object is immutable, and is never updated. If
an entity with this cache concurrency is updated, an exception is
thrown.

This is the simplest, safest, and best-performing cache concurrency
strategy. It’s particularly suitable for so-called "reference" data.

Indicates that the cached object is sometimes updated, but that it’s
extremely unlikely that two transactions will attempt to update the
same item of data at the same time.

This strategy does not use locks. When an item is updated, the cache is
invalidated both before and after completion of the updating
transaction. But without locking, it’s impossible to completely rule out
the possibility of a second transaction storing or retrieving stale data in
or from the cache during the completion process of the first
transaction.

Indicates a non-vanishing likelihood that two concurrent transactions
attempt to update the same item of data simultaneously.

This strategy uses "soft" locks to prevent concurrent transactions from
retrieving or storing a stale item from or in the cache during the
transaction completion process. A soft lock is simply a marker entry
placed in the cache while the updating transaction completes.

« Asecond transaction may not read the item from the cache while
the soft lock is present, and instead simply proceeds to read the
item directly from the database, exactly as if a regular cache miss
had occurred.

« Similarly, the soft lock also prevents this second transaction from
storing a stale item to the cache when it returns from its round trip
to the database with something that might not quite be the latest
version.

Indicates that concurrent writes are common, and the only way to
maintain synchronization between the second-level cache and the
database is via the use of a fully transactional cache provider. In this
case, the cache and the database must cooperate via JTA or the XA
protocol, and Hibernate itself takes on little responsibility for
maintaining the integrity of the cache.

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/CacheConcurrencyStrategy.html

Which policies make sense may also depend on the underlying second-level cache implementation.

JPA has a similar annotation, named @Cacheable. Unfortunately, it’s almost useless to us, since:

« it provides no way to specify any information about the nature of the cached entity and how its cache should be
managed, and

« it may not be used to annotate associations, and so we can’t even use it to mark collection roles as eligible for storage
in the second-level cache.

8.9. Caching by natural id

If our entity has a natural id, we can enable an additional cache, which holds cross-references from natural id to primary id, by annotating
the entity @NaturalIdCache. By default, the natural id cache is stored in a dedicated region of the second-level cache, separate from the
cached entity data.

@Entity

@Cache(usage=READ_WRITE, region="Book")
@NaturalIdCache(region="BookIsbn")
class Book {

@Naturalld
String isbn;

@Naturalld
int printing;

This cache is utilized when the entity is retrieved using one of the operations of Session which performs lookup by natural id.

@NaturalIdCache unlessit’s already eligible for storage in the second-level cache, that is, unless it’s also annotated

o Since the natural id cache doesn’t contain the actual state of the entity, it doesn’t make sense to annotate an entity
@Cache.

It’s worth noticing that, unlike the primary identifier of an entity, a natural id might be mutable.
We must now consider a subtlety that often arises when we have to deal with so-called "reference data", that is, data which fits easily in

memory, and doesn’t change much.

8.10. Caching and association fetching
Let’s consider again our Publisher class:

@Cache(usage=NONSTRICT_READ_WRITE, region="Publishers")
@Entity
class Publisher { ... }

Data about publishers doesn’t change very often, and there aren’t so many of them. Suppose we’ve set everything up so that the publishers
are almost always available in the second-level cache.

Then in this case we need to think carefully about associations of type Publisher.

@ManyToOne
Publisher publisher;

There’s no need for this association to be lazily fetched, since we’re expecting it to be available in memory, so we won’t set it fetch=LAZY.
But on the other hand, if we leave it marked for eager fetching then, by default, Hibernate will often fetch it using a join. This places
completely unnecessary load on the database.

The solution is the @Fetch annotation:

@ManyToOne @Fetch(SELECT)
Publisher publisher;

By annotating the association @Fetch(SELECT), we suppress join fetching, giving Hibernate a chance to find the associated Publisher in the

105

https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/annotations/Fetch.html

cache.

Therefore, we arrive at this rule of thumb:

Many-to-one associations to "reference data", or to any other data that will almost always be available in the cache,
should be mapped EAGER,SELECT.

Other associations, as we’ve already made clear, should be LAZY.

Once we’ve marked an entity or collection as eligible for storage in the second-level cache, we still need to set up an actual cache.

8.11. Configuring the second-level cache provider

Configuring a second-level cache provider is a rather involved topic, and quite outside the scope of this document. But in case it helps, we
often test Hibernate with the following configuration, which uses EHCache as the cache implementation, as above in Optional
dependencies:

Table 8.9: EHCache configuration

Configuration property name Property value
hibernate.cache.region.factory_class jcache
hibernate. javax.cache.uri /ehcache. xml

If you’re using EHCache, you’ll also need to include an ehcache. xml file that explicitly configures the behavior of each cache region
belonging to your entities and collections. You’ll find more information about configuring EHCache here.

We may use any other implementation of JCache, such as Caffeine. JCache automatically selects whichever implementation it finds on the
classpath. If there are multiple implementations on the classpath, we must disambiguate using:

Table 8.10: Disambiguating the JCache implementation

Configuration property name Property value

hibernate. javax.cache.provider The implementation of javax.cache.spi.CachingProvider, for example:
org.ehcache. jsr107.EhcacheCachingProvider for EHCache
com.github.benmanes.caffeine. jcache.spi.CaffeineCachingProvider for Caffeine

Alternatively, to use Infinispan as the cache implementation, the following settings are required:

Table 8.11: Infinispan provider configuration

Configuration property name Property value
hibernate.cache.region.factory_class infinispan
hibernate.cache.infinispan.cfg Path to infinispan configuration file, for example:

org/infinispan/hibernate/cache/commons/builder/infinis fora distributed cache
pan-configs.xml

org/infinispan/hibernate/cache/commons/builder/infinis to test with local cache

pan-configs-local.xml

Infinispan is usually used when distributed caching is required. There’s more about using Infinispan with Hibernate here.
Finally, there’s a way to globally disable the second-level cache:

Table 8.12: Setting to disable caching

Configuration property name Property value

hibernate.cache.use_second_level_cache true to enable caching, or false to disable it

106

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/CacheSettings.html#CACHE_REGION_FACTORY
https://www.ehcache.org/documentation/
https://github.com/ben-manes/caffeine/
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/CacheSettings.html#CACHE_REGION_FACTORY
https://infinispan.org/docs/stable/titles/hibernate/hibernate.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/CacheSettings.html#USE_SECOND_LEVEL_CACHE

When hibernate.cache.region.factory_class is set, this property defaults to true.

This setting lets us easily disable the second-level cache completely when troubleshooting or profiling performance.

You can find much more information about the second-level cache in the User Guide.

8.12. Caching query result sets

The caches we’ve described above are only used to optimize lookups by id or by natural id. Hibernate also has a way to cache the result sets
of queries, though this is only rarely an efficient thing to do.

The query cache must be enabled explicitly:

Table 8.13: Setting to enable the query cache

Configuration property name Property value

hibernate.cache.use_query_cache true to enable the query cache

To cache the results of a query, call SelectionQuery.setCacheable(true):

session.createQuery("from Product where discontinued = false")
.setCacheable(true)
.getResultList();

By default, the query result set is stored in a cache region named default-query-results-region. Since different queries should have
different caching policies, it’s common to explicitly specify a region name:

session.createQuery("from Product where discontinued = false")
.setCacheable(true)
.setCacheRegion("ProductCatalog")
.getResultList();

Aresult set is cached together with a logical timestamp. By "logical", we mean that it doesn’t actually increase linearly with time, and in
particular it’s not the system time.

When a Product is updated, Hibernate does not go through the query cache and invalidate every cached result set that’s affected by the
change. Instead, there’s a special region of the cache which holds a logical timestamp of the most-recent update to each table. This is called
the update timestamps cache, and it’s kept in the region default-update-timestamps-region.

It’s your responsibility to ensure that this cache region is configured with appropriate policies. In particular, update
timestamps should never expire or be evicted.

When a query result set is read from the cache, Hibernate compares its timestamp with the timestamp of each of the tables that affect the
results of the query, and only returns the result set if the result set isn’t stale. If the result set is stale, Hibernate goes ahead and re-executes
the query against the database and updates the cached result set.

As is generally the case with any second-level cache, the query cache can break the ACID properties of transactions.
8.13. Second-level cache management

For the most part, the second-level cache is transparent. Program logic which interacts with the Hibernate session is unaware of the cache,
and is not impacted by changes to caching policies.

At worst, interaction with the cache may be controlled by specifying of an explicit CacheMode:

session.setCacheMode(CacheMode . IGNORE);

Or, using JPA-standard APIs:

entityManager.setCacheRetrieveMode(CacheRetrieveMode.BYPASS);
entityManager.setCacheStoreMode(CacheStoreMode.BYPASS);

The JPA-defined cache modes come in two flavors: CacheRetrieveMode and CacheStoreMode.

107

https://docs.hibernate.org/orm/8.0/userguide/html_single/#caching
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/CacheSettings.html#USE_QUERY_CACHE
https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/CacheMode.html

Table 8.14: JPA-defined cache retrieval modes

Mode Interpretation
CacheRetrieveMode . USE Read data from the cache if available
CacheRetrieveMode.BYPASS Don’t read data from the cache; go direct to the database

We might select CacheRetrieveMode.BYPASS if we’re concerned about the possibility of reading stale data from the cache.

Table 8.15: JPA-defined cache storage modes
Mode Interpretation

CacheStoreMode . USE Write data to the cache when read from the database or when modified; do not update already-
cached items when reading

CacheStoreMode . REFRESH Write data to the cache when read from the database or when modified; always update cached items
when reading

CacheStoreMode.BYPASS Don’t write data to the cache

We should select CacheStoreMode . BYPASS if we’re querying data that doesn’t need to be cached.

It’s a good idea to set the CacheStoreMode to BYPASS just before running a query which returns a large result set full of data
that we don’t expect to need again soon. This saves work, and prevents the newly-read data from pushing out the
previously cached data.

In JPA we would use this idiom:

entityManager.setCacheStoreMode(CacheStoreMode.BYPASS);
List<Publisher> allpubs =
entityManager.createQuery("from Publisher", Publisher.class)
.getResultList();
entityManager.setCacheStoreMode(CacheStoreMode.USE);

But Hibernate has a better way:

List<Publisher> allpubs =
session.createSelectionQuery("from Publisher", Publisher.class)
.setCacheStoreMode (CacheStoreMode.BYPASS)
.getResultList();

A Hibernate CacheMode packages a CacheRetrieveMode with a CacheStoreMode.

Table 8.16: Hibernate cache modes and JPA equivalents

Hibernate CacheMode Equivalent JPA modes

NORMAL CacheRetrieveMode.USE, CacheStoreMode . USE

IGNORE CacheRetrieveMode.BYPASS, CacheStoreMode .BYPASS
GET CacheRetrieveMode.USE, CacheStoreMode.BYPASS

PUT CacheRetrieveMode.BYPASS, CacheStoreMode . USE
REFRESH CacheRetrieveMode.REFRESH, CacheStoreMode.BYPASS

There’s no particular reason to prefer Hibernate’s CacheMode over the JPA equivalents. This enumeration only exists because Hibernate had
cache modes long before they were added to JPA.

108

For "reference" data, that is, for data which is expected to always be found in the second-level cache, it’s a good idea to
prime the cache at startup. There’s a really easy way to do this: just execute a query immediately after obtaining the
EntityManager or SessionFactory.

SessionFactory sessionFactory =
setupHibernate(new Configuration())
.buildSessionFactory();
// prime the second-level cache
sessionFactory.inSession(session -> {
session.createSelectionQuery("from Country"))
.setReadOnly(true)
.getResultList();
session.createSelectionQuery("from Product where discontinued = false"))
.setReadOnly(true)
.getResultList();
;

Very occasionally, it’s necessary or advantageous to control the cache explicitly. For example, we might need to evict some data that we
know to be stale because it was updated:

« via direct JDBC, or
+ by some other program.

The Cache interface allows programmatic eviction of cached items.

sessionFactory.getCache().evictEntityData(Book.class, bookId);

respect any isolation or transactional semantics associated with the underlying caches. In particular, eviction via the

: Second-level cache management via the Cache interface is not transaction-aware. None of the operations of Cache
methods of this interface causes an immediate "hard" removal outside any current transaction and/or locking scheme.

Ordinarily, however, Hibernate automatically evicts or updates cached data after modifications, and, in addition, cached data which is
unused will eventually be expired according to the configured policies.

This is quite different to what happens with the first-level cache.

8.14. Session cache management

Entity instances aren’t automatically evicted from the session cache when they’re no longer needed. Instead, they stay pinned in memory
until the session they belong to is discarded by your program. So if you query many entities from within a single persistence context, you
might experience very poor performance. In such cases, it becomes necessary to manage the session cache manually.

The methods detach() and clear() allow you to remove entities from the session cache, making them available for garbage collection.
Since most sessions are rather short-lived, you won’t need these operations very often. And if you find yourself thinking you do need them
in a certain situation, you should strongly consider an alternative solution: a stateless session.

The very best way to avoid having too many entities pinned in the session cache is to not load them from the database in
the first place. Many operations can be performed more efficiently on the database server. This is especially true for bulk
operations.

To update many entities at once, use an update statement:

session.createMutationQuery(

update Book as b
set b.totalSales =
coalesce((select sum(quantity) from OrderItem where book = b), 0)

).executeUpdate();

To insert many entities at once, use insert .. select:

session.createMutationQuery(

insert into OrderQueue (id, isbn, quantity, customerId)
select o.id, i.quantity, i.book.isbn, o.customer.id

109

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/Cache.html

from Order o join o.items i
where o.status = PENDING

).executeUpdate();

For more complicated operations, consider using a stored procedure.

8.15. Stateless sessions

An arguably-underappreciated feature of Hibernate is the StatelessSession interface, which provides a command-oriented, more bare-
metal approach to interacting with the database.

You may obtain a stateless session from the SessionFactory:

StatelessSession ss = getSessionFactory().openStatelessSession();

A stateless session:

« doesn’t have a first-level cache (persistence context), and

« doesn’timplement transactional write-behind or automatic dirty checking, so all operations are executed immediately when they’re
explicitly called.

For a stateless session, we’re always working with detached objects. Thus, the programming model is a bit different:

Table 8.17: Important methods of the StatelessSession

Method name and parameters Effect

get(Class, Object) Obtain a detached object, given its type and its id, by executing a select

fetch(Object) Fetch an association of a detached object

refresh(Object) Refresh the state of a detached object by executing a select

insert(Object) Immediately insert the state of the given transient object into the database

update(Object) Immediately update the state of the given detached object in the database

delete(Object) Immediately delete the state of the given detached object from the database

upsert(Object) Immediately insert or update the state of the given detached object using a SQL merge into statement
0 The operations of a stateless session have no corresponding CascadeTypes, and so these operations never cascade to

associated entity instances.

o There’s no flush() operation, and so update() is always explicit.

In certain circumstances, this makes stateless sessions easier to work with and simpler to reason about, but with the caveat that a stateless
session is much more vulnerable to data aliasing effects, since it’s easy to get two non-identical Java objects which both represent the same
row of a database table.

Consider the following fragments:

var b1 = statelessSession.get(Book.class, isbn);
var b2 = statelessSession.get(Book.class, isbn);
assert bl == b2; // fails

var b1l = statelessSession.get(Book.class, isbn);
var b2 = statelessSession.get(Book.class, isbn);
statelessSession.fetch(bl.publisher);
statelessSession. fetch(b2.publisher);

assert b1l.publisher == b2.publisher; // fails

In a stateful session, entity instances are canonicalized by primary key, and so we don’t usually have two different objects representing a

110

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/StatelessSession.html

single row. No such canonicalization exists across invocations of a stateless session. In a stateless session, both the assertions fail.

° If we use fetch() in a stateless session, we can very easily obtain two objects representing the same database row!

But there are also some advantages to this model. In particular, the absence of a persistence context means that we can safely perform
bulk-processing tasks without allocating huge quantities of memory. Use of a StatelessSession alleviates the need to call:

¢ clear() or detach() to perform first-level cache management, and
* setCacheMode() to bypass interaction with the second-level cache.

Stateless sessions can be useful, but for bulk operations on huge datasets, Hibernate can’t possibly compete with stored
procedures!

8.16. Optimistic and pessimistic locking

Finally, an aspect of behavior under load that we didn’t mention above is row-level data contention. When many transactions try to read
and update the same data, the program might become unresponsive with lock escalation, deadlocks, and lock acquisition timeout errors.

There’s two basic approaches to data concurrency in Hibernate:

+ optimistic locking using @version columns, and

+ database-level pessimistic locking using the SQL for update syntax (or equivalent).

In the Hibernate community it’s much more common to use optimistic locking, and Hibernate makes that incredibly easy.

Where possible, in a multiuser system, avoid holding a pessimistic lock across a user interaction. Indeed, the usual
practice is to avoid having transactions that span user interactions. For multiuser systems, optimistic locking is king.
That said, there is also a place for pessimistic locks, which can sometimes reduce the probability of transaction rollbacks.

Therefore, the find(), lock(), and refresh() methods of the session accept an optional LockMode. Here’s the simplest way to execute a
select .. for update in Hibernate:

Book book = session.find(Book.class, isbn, LockMode.PESSIMISTIC_WRITE);
We can also specify a LockMode for a query.

A lock mode can be used to request a pessimistic lock, or to customize the behavior of optimistic locking:

Table 8.18: Optimistic and pessimistic lock modes

LockMode type Meaning
READ An optimistic lock obtained implicitly whenever an entity is read from the database using select
OPTIMISTIC An optimistic lock obtained when an entity is read from the database, and verified using a select to check

the version when the transaction completes

OPTIMISTIC_FORCE_INCREMENT An optimistic lock obtained when an entity is read from the database, and enforced using an update to
increment the version when the transaction completes

WRITE A pessimistic lock obtained implicitly whenever an entity is written to the database using update or insert
PESSIMISTIC_READ A pessimistic for share lock

PESSIMISTIC_WRITE A pessimistic for update lock

PESSIMISTIC_FORCE_INCREMENT A pessimistic lock enforced using an immediate update to increment the version

NONE No lock; assigned when an entity is read from the second-level cache

Note that an OPTIMISTIC lock is always verified at the end of the transaction, even when the entity has not been modified. This is slightly
different to what most people mean when they talk about an "optimistic lock". It’s never necessary to request an OPTIMISTIC lock on a
modified entity, since the version number is always verified when a SQL update is executed.

o JPA has its own LockModeType, which enumerates most of the same modes. However, JPA’s LockModeType.READ is a

111

https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/LockMode.html
https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/query/SelectionQuery.html#setLockMode(jakarta.persistence.LockModeType)

synonym for OPTIMISTIC—it’s not the same as Hibernate’s LockMode . READ. Similarly, LockModeType . WRITE is a synonym for
OPTIMISTIC_FORCE_INCREMENT and is not the same as LockMode . WRITE.

A pessimistic lock request may be combined with an explicit Timeout.

session.lock(book, LockMode.PESSIMISTIC_WRITE, Timeout.seconds(2))

The interface Timeouts defines some special instances of Timeout which may be used to request use of for update nowait or for update
skip locked on databases which support these options.

session.lock(book, LockMode.PESSIMISTIC_WRITE, Timeouts.NO_WAIT)

8.17. Collecting statistics

We may ask Hibernate to collect statistics about its activity by setting this configuration property:

Configuration property name Property value

hibernate.generate_statistics true to enable collection of statistics

The statistics are exposed by the Statistics object:

long failedVersionChecks =
sessionFactory.getStatistics()
.getOptimisticFailureCount();

long publisherCacheMissCount =
sessionFactory.getStatistics()
.getEntityStatistics(Publisher.class.getName())
.getCacheMissCount()

Hibernate’s statistics enable observability. Both Micrometer and SmallRye Metrics are capable of exposing these metrics.

8.18. Using Java Flight Recorder

Hibernate JFR is a separate module which reports events to Java Flight Recorder. This is different to reporting aggregated metrics via a tool
like Micrometer, since JFR records information about the timing and duration of each discrete event, along with a stack trace. If anything,
the information reported by JFR is a little too detailed to make it really useful for performance tuning—it’s perhaps more useful for
troubleshooting.

No special configuration is required to use Hibernate JFR. Just include org.hibernate.orm:hibernate-jfr as a runtime dependency. In

particular, you don’t need to enable hibernate.generate_statistics.

8.19. Tracking down slow queries

When a poorly-performing SQL query is discovered in production, it can sometimes be hard to track down exactly where in the Java code
the query originates. Hibernate offers two configuration properties that can make it easier to identify a slow query and find its source.

Table 8.20: Settings for tracking slow queries

Configuration property name Purpose Property value

hibernate.log_slow_query Log slow queries at the INFO level The minimum execution time, in milliseconds,
which characterizes a "slow" query

hibernate.use_sql_comments Prepend comments to the executed SQL true or false

When hibernate.use_sql_comments is enabled, the text of the HQL query is prepended as a comment to the generated SQL, which usually
makes it easy to find the HQL in the Java code.

The comment text may be customized:

* by calling Query . setComment(comment) or Query.setHint(AvailableHints.HINT_COMMENT, comment), or

112

https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/Timeouts.html
https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/Timeouts.html#NO_WAIT
https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/Timeouts.html#SKIP_LOCKED
https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/Timeouts.html#SKIP_LOCKED
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/StatisticsSettings.html#GENERATE_STATISTICS
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/stat/Statistics.html
https://quarkus.io/guides/micrometer
https://quarkus.io/guides/microprofile-metrics
https://developers.redhat.com/blog/2020/08/25/get-started-with-jdk-flight-recorder-in-openjdk-8u
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/JdbcSettings.html#LOG_SLOW_QUERY
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/JdbcSettings.html#USE_SQL_COMMENTS

* via the @NamedQuery annotation.
Once you've identified a slow query, one of the best ways to make it faster is to actually go and talk to someone who is an
expert at making queries go fast. These people are called "database administrators", and if you’re reading this document

you probably aren’t one. Database administrators know lots of stuff that Java developers don’t. So if you’re lucky enough
to have a DBA about, you don’t need to Dunning-Kruger your way out of a slow query.

An expertly-defined index might be all you need to fix a slow query.

8.20. Adding indexes

The @Index annotation may be used to add an index to a table:

@Entity
@Table(indexes=@Index(columnList="title, year, publisher_id"))
class Book { ... }

It’s even possible to specify an ordering for an indexed column, or that the index should be case-insensitive:

@Entity
@Table(indexes=@Index(columnList="(lower(title)), year desc, publisher_id"))
class Book { ... }

This lets us create a customized index for a particular query.

Note that SQL expressions like lower(title) must be enclosed in parentheses in the columnList of the index definition.

It’s not clear that information about indexes belongs in annotations of Java code. Indexes are usually maintained and
modified by a database administrator, ideally by an expert in tuning the performance of one particular RDBMS. So it
might be better to keep the definition of indexes in a SQL DDL script that your DBA can easily read and modify.
Remember, we can ask Hibernate to execute a DDL script using the property javax.persistence.schema-
generation.create-script-source.

8.21. Dealing with denormalized data

Atypical relational database table in a well-normalized schema has a relatively small number of columns, and so there’s little to be gained
by selectively querying columns and populating only certain fields of an entity class.

But occasionally, we hear from someone asking how to map a table with a hundred columns or more! This situation can arise when:

« dataisintentionally denormalized for performance,
« the results of a complicated analytic query are exposed via a view, or
« someone has done something crazy and wrong.

Let’s suppose that we’re not dealing with the last possibility. Then we would like to be able to query the monster table without returning all
of its columns. At first glance, Hibernate doesn’t offer a perfect bottled solution to this problem. This first impression is misleading. Actually,
Hibernate features more than one way to deal with this situation, and the real problem is deciding between the ways. We could:

1. map multiple entity classes to the same table or view, being careful about "overlaps" where a mutable column is mapped to more than
one of the entities,

2. use HQL or native SQL queries returning results into record types instead of retrieving entity instances, or
3. use the bytecode enhancer and @LazyGroup for attribute-level lazy fetching.

Some other ORM solutions push the third option as the recommended way to handle huge tables, but this has never been the preference of
the Hibernate team or Hibernate community. It’s much more typesafe to use one of the first two options.

8.22, Reactive programming with Hibernate
Finally, many systems which require high scalability now make use of reactive programming and reactive streams. Hibernate Reactive
brings O/R mapping to the world of reactive programming. You can learn much more about Hibernate Reactive from its Reference

Documentation.

Hibernate Reactive may be used alongside vanilla Hibernate in the same program, and can reuse the same entity classes.
This means you can use the reactive programming model exactly where you need it—perhaps only in one or two places in

113

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/LazyGroup.html
https://hibernate.org/reactive/
https://hibernate.org/reactive/documentation/3.0/reference/html_single/
https://hibernate.org/reactive/documentation/3.0/reference/html_single/

your system. You don’t need to rewrite your whole program using reactive streams.

114

Chapter 9. Advanced Topics

In the last chapter of this Introduction, we turn to some topics that don’t really belong in an introduction. Here we consider some problems,
and solutions, that you’re probably not going to run into immediately if you’re new to Hibernate. But we do want you to know about them,

so that when the time comes, you’ll know what tool to reach for.

9.1. Filters

Filters are one of the nicest and under-usedest features of Hibernate, and we’re quite proud of them. Afilter is a named, globally-defined,

parameterized restriction on the data that is visible in a given session.
Examples of well-defined filters might include:

« afilter that restricts the data visible to a given user according to row-level permissions,

« afilter which hides data which has been soft-deleted,

« in a versioned database, a filter that displays versions which were current at a given instant in the past, or
« afilter that restricts to data associated with a certain geographical region.

Afilter must be declared somewhere. A package descriptor is as good a place as any for a @FilterDef:

@FilterDef(name = "ByRegion",
parameters = @ParamDef(name = "region", type = String.class))
package org.hibernate.example;

This filter has one parameter. Fancier filters might in principle have multiple parameters, though we admit this must be quite rare.

If you add annotations to a package descriptor, and you’re using Configuration to configure Hibernate, make sure you
call Configuration.addPackage() to let Hibernate know that the package descriptor is annotated.

Typically, but not necessarily, a @ ilterDef specifies a default restriction:

@FilterDef(name = "ByRegion",
parameters = @ParamDef(name = "region", type = String.class),
defaultCondition = "region = :region")

package org.hibernate.example;

Note that filter restrictions are always written in the native SQL dialect of the database, not in HQL.
The restriction must contain a reference to the parameter of the filter, specified using the usual syntax for named parameters.

Any entity or collection which is affected by a filter must be annotated eFilter:

@Entity
@Filter(name = example_.BY_REGION)
class User {

@Id String username;

String region;

Here, as usual, example_.BY_REGION is generated by Hibernate Processor, and is just a constant with the value "ByRegion".

If the @Filter annotation does not explicitly specify a restriction, the default restriction given by the @FilterDef will be applied to the
entity. But an entity is free to override the default condition.

@Entity
@Filter(name = example_.FILTER_BY_REGION, condition = "name = :region")
class Region {

@Id String name;

115

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/FilterDef.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/Filter.html

Note that the restriction specified by the condition or defaultCondition is a native SQL expression.

Table 9.1: Annotations for defining filters

Annotation Purpose
@FilterDef Defines a filter and declares its name (exactly one per filter)
@Filter Specifies how a filter applies to a given entity or collection (many per filter)

Afilter condition may not specify joins to other tables, but it may contain a subquery.

@Filter(name="notDeleted"
condition="(select r.deletionTimestamp from Record r where r.id = record_id) is not null")

Only unqualified column names like record_id in this example are interpreted as belonging to the table of the filtered
entity.

By default, a new session comes with every filter disabled. A filter may be explicitly enabled in a given session by calling enableFilter() and
assigning arguments to the parameters of the filter using the returned instance of Filter. You should do this right at the start of the session.

sessionFactory.inTransaction(session -> {
session.enableFilter(example_.FILTER_BY_REGION)
.setParameter("region", "es")
.validate();

3

Now, any queries executed within the session will have the filter restriction applied. Collections annotated @Filter will also have their
members correctly filtered.

On the other hand, filters are not applied to @anyToOne associations, nor to find(). This is completely by design and is
not in any way a bug.
More than one filter may be enabled in a given session.

Alternatively, since Hibernate 6.5, a filter may be declared as autoEnabled in every session. In this case, the argument to a filter parameter
must be obtained from a Supplier.

@FilterDef(name = "ByRegion",
autoEnabled = true,

parameters = @ParamDef(name = "region", type = String.class,
resolver = RegionSupplier.class),
defaultCondition = "region = :region")

package org.hibernate.example;

It’s not necessary to call enableFilter() for a filter declared autoEnabled = true.

When we only need to filter rows by a static condition with no parameters, we don’t need a filter, since @QLRestriction
provides a much simpler way to do that.

We’ve mentioned that a filter can be used to implement versioning, and to provide historical views of the data. Being such a general-
purpose construct, filters provide a lot of flexibility here. But if you’re after a more focused/opinionated solution to this problem, you
should definitely check out Envers.

Using Envers for auditing historical data

Envers is an add-on to Hibernate ORM which keeps a historical record of each versioned entity in a separate audit table, and allows
past revisions of the data to be viewed and queried. A full introduction to Envers would require a whole chapter, so we’ll just give you
a quick taste here.

First, we must mark an entity as versioned, using the @Audi ted annotation:

116

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/Session.html#enableFilter(java.lang.String)
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/Filter.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/SQLRestriction.html
https://hibernate.org/orm/envers/

Q@Audited @Entity
@Table(name="CurrentDocument")
@AuditTable("DocumentRevision")
class Document { ... }

The @AuditTable annotation is optional, and it’s better to set either org.hibernate.envers.audit_table_prefix or
org.hibernate.envers.audit_table_suffix and let the audit table name be inferred.

The AuditReader interface exposes operations for retrieving and querying historical revisions. It’s really easy to get hold of one of
these:

AuditReader reader = AuditReaderFactory.get(entityManager);

Envers tracks revisions of the data via a global revision number. We may easily find the revision number which was current at a given
instant:

Number revision = reader.getRevisionNumberForDate(datetime);

We can use the revision number to ask for the version of our entity associated with the given revision number:

Document doc = reader.find(Document.class, id, revision);

Alternatively, we can directly ask for the version which was current at a given instant:

Document doc = reader.find(Document.class, id, datetime);

We can even execute queries to obtain lists of entities current at the given revision number:

List documents =
reader.createQuery()
.forEntitiesAtRevision(Document.class, revision)
.getResultList();

For much more information, see the User Guide.

Historically, filters where often used to implement soft-delete. But, since 6.4, Hibernate now comes with soft-delete built in.

9.2. Soft-delete

Even when we don’t need complete historical versioning, we often prefer to "delete" a row by marking it as obsolete using a SQL update,
rather than by executing an actual SQL delete and removing the row from the database completely.

The @SoftDelete annotation controls how this works:

@Entity
@SoftDelete(columnName = "deleted",

converter = TrueFalseConverter.class)
class Draft {

The columnName specifies a column holding the deletion status, and the converter is responsible for converting a Java Boolean to the type of
that column. In this example, TrueFalseConverter sets the column to the character 'F " initially, and to 'T' when the row is deleted. Any JPA

AttributeConverter for the Java Boolean type may be used here. Built-in options include NumericBooleanConverter and YesNoConverter
Much more information about soft delete is available in the User Guide.

Another feature that you could use filters for, but now don’t need to, is multi-tenancy.

117

https://docs.hibernate.org/orm/8.0/userguide/html_single/#envers
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/SoftDelete.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/type/TrueFalseConverter.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/type/NumericBooleanConverter.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/type/YesNoConverter.html
https://docs.hibernate.org/orm/8.0/userguide/html_single/#soft-delete

9.3. Multi-tenancy

A multi-tenant database is one where the data is segregated by tenant. We don’t need to actually define what a "tenant" really represents
here; all we care about at this level of abstraction is that each tenant may be distinguished by a unique identifier. And that there’s a well-
defined current tenant in each session.

We may specify the current tenant when we open a session:

var session =
sessionFactory.withOptions()
.tenantIdentifier(tenantId)
.openSession();

Or, when using JPA-standard APIs:

var entityManager =
entityManagerFactory.createEntityManager(Map.of (HibernateHints.HINT_TENANT_ID, tenantId));

However, since we often don’t have this level of control over creation of the session, it’s more common to supply an implementation of
CurrentTenantIdentifierResolver to Hibernate.
To make use of multi-tenancy, we’ll usually need to set at least one of these configuration properties:

Table 9.2: Multi-tenancy configuration

Configuration property name Purpose

hibernate.tenant_identifier_resolver Specifies the CurrentTenantIdentifierResolver

hibernate.multi_tenant.schema_mapper Specifies the TenantSchemaMapper for schema-based multi-tenancy

hibernate.multi_tenant.credentials_mapper Specifies the TenantCredentialsMapper for schema-based or discriminator-based multi-
tenancy

hibernate.multi_tenant_connection_provider Specifies the MultiTenantConnectionProvider for database-based multi-tenancy

There are three common approaches to multi-tenancy:

1. each tenant has its own database,
2. each tenant has its own schema, or
3. tenants share tables in a single schema, and rows are tagged with the tenant id.

Database-based multi-tenancy

The first option is to give each tenant its own database. That is, we’ll use a separate source of JDBC connections for each tenant.

The interface MultiTenantConnectionProvider is responsible for obtaining an appropriate Connection for a given tenant. Typically, we’ll
provide a custom implementation of this interface:

« from time to time, Hibernate will ask for a connection, passing the id of the current tenant, and then we must create an appropriate
connection or obtain one from a pool, and return it to Hibernate, and

« later, Hibernate will release the connection and ask us to destroy it or return it to the appropriate pool.

Check out DataSourceBasedMultiTenantConnectionProviderImpl for inspiration. If your source of JDBC connectionsis a
set of JNDI-bound DataSources, you might even be able to use this implementation directly.

Schema-based multi-tenancy

The second option is to keep all the data for different tenants in the same database, giving each tenant a different named database schema
with its own set of tables.

« If all tenants connect to the database using the same credentials, we must supply a TenantSchemaMapper which is responsible for
mapping tenant ids to schema names.

« If each tenant should use distinct credentials to connect to the database, and if your JDBC DataSource supports this (not all do!) then we
can use a TenantCredentialsMapper to supply the username and password of each tenant. If each database user has a different default
schema, we might not need a TenantSchemaMapper-.

118

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/context/spi/CurrentTenantIdentifierResolver.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/MultiTenancySettings.html#MULTI_TENANT_IDENTIFIER_RESOLVER
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/MultiTenancySettings.html#MULTI_TENANT_SCHEMA_MAPPER
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/MultiTenancySettings.html#MULTI_TENANT_CREDENTIALS_MAPPER
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/MultiTenancySettings.html#MULTI_TENANT_CONNECTION_PROVIDER
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/engine/jdbc/connections/spi/MultiTenantConnectionProvider.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/engine/jdbc/connections/spi/DataSourceBasedMultiTenantConnectionProviderImpl.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/context/spi/TenantSchemaMapper.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/context/spi/TenantCredentialsMapper.html

Discriminator-based multi-tenancy

The third option is quite different. In this case we store data from all tenants in the same tables, but each table has a dedicated column
holding the tenant id mapped by each of our entities.

@Entity
class Account {
@Id String id;
@TenantId String tenantld;

The @TenantId annotation is used to indicate an attribute of an entity which holds the tenant id. Within a given session, our data is
automatically filtered so that only rows tagged with the tenant id of the current tenant are visible in that session.

é Native SQL queries are not automatically filtered by tenant id; you’ll have to do that part yourself.

9.4. Read-only replicas

A similar but distinct problem is accessing data held in a read-only replica of the main production database. One way to handle this
problem is to simply instantiate two instances of SessionFactory:

* read-only transactions use a SessionFactory configured to access the read-only replica, while
« other transactions use the SessionFactory configured to read from and write to the main database.

The second-level cache doesn’t play well with replication, and so a SessionFactory with access to a read-only replica
should be configured with the second-level cache disabled.

Alternatively, Hibernate 7.2 introduces experimental support for accessing replicas via a single instance of SessionFactory. A Session which
accesses a read-only replica must be created in a special read-only mode:

Session readOnlySession =
factory.withOptions()
.readOnly(true)
.initialCacheMode(CacheMode . IGNORE)
.openSession();

There are now two possibilities.

« Some JDBC drivers (MySQL) are able to automatically direct read-only sessions to the read-only replica. In this case, there’s no more
work to do, since Hibernate will automatically call Connection.setReadOnly(true) to signal to the JDBC driver that the read-only replica
may be used.

« Other drivers (Postgres, Oracle) don’t feature any special support for read-only replicas, and in this case we need to supply our own

custom ConnectionProvider orMultiTenantConnectionProvider and implement getReadOnlyConnection() to return a connection to the
read-only replica.

Notice that we created the read-only session with CacheMode . IGNORE, indicating that access to the read-only replica should bypass the
second-level cache. There’s two different phenomena we need to consider here:

1. Aread-only replica might contain stale data which has already been updated or deleted from the main database and invalidated in the
second-level cache. A read-only session might read this stale data and recache it, exposing the stale data to subsequent sessions. Use of
CacheMode.GET in a read-only session prevents this phenomenon.

2. A session might read data which has not yet been replicated from the main database and add it to the second-level cache. If a read-only

session reads this data from the cache, it might fail to resolve references to other data which has not yet been replicated. Use of
CacheMode . PUT in a read-only session prevents this phenomenon.

Use of CacheMode . IGNORE in a read-only session prevents both phenomena.

programming by someone who really understands what they’re doing. We do not, therefore, require the use of

The first issue is objectively more serious than the second, and the second issue can often be avoided by careful
0 CacheMode . IGNORE, but we strongly encourage the use of at least CacheMode . GET in every read-only session.

119

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/TenantId.html
https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/engine/jdbc/connections/spi/ConnectionProvider.html
https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/engine/jdbc/connections/spi/MultiTenantConnectionProvider.html
https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/engine/jdbc/connections/spi/ConnectionProvider.html#getReadOnlyConnection()
https://docs.hibernate.org/orm/8.0/javadocs//org/hibernate/CacheMode.html#IGNORE

9.5. Using custom-written SQL

We’ve already discussed how to run queries written in SQL, but occasionally that’s not enough. Sometimes—but much less often than you
might expect—we would like to customize the SQL used by Hibernate to perform basic CRUD operations for an entity or collection.

For this we can use @SQLInsert and friends:

@Entity

@SQLInsert(sgl = "insert into person (name, id, valid) values (?, ?, true)",
verify = Expectation.RowCount.class)

@SQLUpdate(sgl = "update person set name = ? where id = ?")

@SQLDelete(sql = "update person set valid = false where id = ?")

@sQLSelect(sql = "select id, name from person where id = ? and valid = true")

public static class Person { ... }

Table 9.3: Annotations for overriding generated SQL

Annotation Purpose

@sSQLSelect Overrides a generated SQL select statement

@SQLInsert Overrides a generated SQL insert statement

@SQLUpdate Overrides a generated SQL update statement

@SQDelete Overrides a generated SQL delete statement for a single row
@SQDeleteAll Overrides a generated SQL delete statement for multiple rows
@SQLRestriction Adds a restriction to generated SQL

@sQLOrder Adds an ordering to generated SQL

If the custom SQL should be executed via a CallableStatement, just specify callable=true.
Any SQL statement specified by one of these annotations must have exactly the number of JDBC parameters that Hibernate expects, that is,
one for each column mapped by the entity, in the exact order Hibernate expects. In particular, the primary key columns must come last.
However, the @Column annotation does lend some flexibility here:

« if a column should not be written as part of the custom insert statement, and has no corresponding JDBC parameter in the custom
SQL, map it @Column(insertable=false), or

« if a column should not be written as part of the custom update statement, and has no corresponding JDBC parameter in the custom
SQL, map it @Column(updatable=false).

The verify member of these annotations specifies a class implementing Expectation, allowing customized logic for checking the success of
an operation executed via JDBC. There are three built-in implementations:

* Expectation.None, which performs no checks,
¢ Expectation.RowCount, which is what Hibernate usually uses when executing its own generated SQL,
* and Expectation.OutParameter, which is useful for checking an output parameter of a stored procedure.

You can write your own implementation of Expectation if none of these options is suitable.

If you need custom SQL, but are targeting multiple dialects of SQL, you can use the annotations defined in
DialectOverride. For example, this annotation lets us override the custom insert statement just for PostgreSQL:

@ialectOverride.SQLInsert(dialect = PostgreSQLDialect.class,
override = @SQLInsert(sql="insert into person (name,id) values (?,gen_random_uuid())"))

It’s even possible to override the custom SQL for specific versions of a database.

Sometimes a custom insert or update statement assigns a value to a mapped column which is calculated when the statement is executed
on the database. For example, the value might be obtained by calling a SQL function:

120

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/SQLInsert.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/SQLSelect.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/SQLInsert.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/SQLUpdate.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/SQDelete.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/SQDeleteAll.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/SQLRestriction.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/SQLOrder.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/DialectOverride.html

@SQLInsert(sgl = "insert into person (name, id) values (?, gen_random_uuid())")

But the entity instance which represents the row being inserted or updated won’t be automatically populated with that value. And so our
persistence context loses synchronization with the database. In situations like this, we may use the @Generated annotation to tell Hibernate
to reread the state of the entity after each insert or update.

9.6. Handling database-generated columns

Sometimes, a column value is assigned or mutated by events that happen in the database, and aren’t visible to Hibernate. For example:

+ atable might have a column value populated by a trigger,
+ a mapped column might have a default value defined in DDL, or
+ acustom SQL insert or update statement might assign a value to a mapped column, as we saw in the previous subsection.

One way to deal with this situation is to explicitly call refresh() at appropriate moments, forcing the session to reread the state of the
entity. But this is annoying.

The @Generated annotation relieves us of the burden of explicitly calling refresh(). It specifies that the value of the annotated entity
attribute is generated by the database, and that the generated value should be automatically retrieved using a SQL returning clause, or
separate select after it is generated.

A useful example is the following mapping:

@Entity

class Entity {
@Generated @Id
@ColumnDefault("gen_random_uuid()")
UUID id;

The generated DDL is:

create table Entity (
id uuid default gen_random_uuid() not null,
primary key (uuid)

So here the value of id is defined by the column default clause, by calling the PostgreSQL function gen_random_uuid().

When a column value is generated during updates, use @Generated(event=UPDATE). When a value is generated by both inserts and updates,
use @Generated(event={INSERT,UPDATE}).

For columns which should be generated using a SQL generated always as clause, prefer the @GeneratedColumn
annotation, so that Hibernate automatically generates the correct DDL.

Actually, the @Generated and @GeneratedColumn annotations are defined in terms of a more generic and user-extensible framework for
handling attribute values generated in Java, or by the database. So let’s drop down a layer, and see how that works.

9.7. User-defined generators

JPA doesn’t define a standard way to extend the set of id generation strategies, but Hibernate does:

* the Generator hierarchy of interfaces in the package org.hibernate.generator lets you define new generators, and

¢ the @IdGeneratorType meta-annotation from the package org.hibernate.annotations lets you write an annotation which associates a
Generator type with identifier attributes.

Furthermore, the @valueGenerationType meta-annotation lets you write an annotation which associates a Generator type with a non-eId
attribute.

annotation from older versions of Hibernate. However, the older APIs are still available and custom

0 These APIs were new in Hibernate 6, and supersede the classic IdentifierGenerator interface and @GenericGenerator
IdentifierGenerators written for older versions of Hibernate continue to work in Hibernate 7.

Hibernate has a range of built-in generators which are defined in terms of this new framework.

121

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/Generated.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/GeneratedColumn.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/generator/Generator.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/IdGeneratorType.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/ValueGenerationType.html

Annotation

@Generated

@GeneratedColumn

@CurrentTimestamp

@CreationTimestamp

@QUpdateTimestamp

@QUuidGenerator

Table 9.4: Built-in generators

Implementation
GeneratedGeneration
GeneratedAlwaysGeneration

CurrentTimestampGeneration

CurrentTimestampGeneration

CurrentTimestampGeneration

UuidGenerator

Purpose
Generically handles database-generated values
Handles values generated using generated always

Generic support for database or in-memory generation of creation or update
timestamps

Atimestamp generated when an entity is first made persistent

Atimestamp generated when an entity is made persistent, and regenerated
every time the entity is modified

A more flexible generator for RFC 4122 UUIDs

Furthermore, support for JPA’s standard id generation strategies is also defined in terms of this framework.

As an example, let’s look at how @UuidGenerator is defined:

@IdGeneratorType(org.hibernate.id.uuid.UuidGenerator.class)
@ValueGenerationType(generatedBy = org.hibernate.id.uuid.UuidGenerator.class)

@Retention(RUNTIME)

@Target({ FIELD, METHOD })
public @interface UuidGenerator { ... }

@UuidGenerator is meta-annotated both @IdGeneratorType and @valueGenerationType because it may be used to generate both ids and
values of regular attributes. Either way, this Generator class does the hard work:

public class UuidGenerator
// this generator produced values before SQL is executed
implements BeforeExecutionGenerator {

// constructors accept an instance of the @UuidGenerator
// annotation, allowing the generator to be "configured"

// called to create an id generator
public UuidGenerator(

org.hibernate.annotations.UuidGenerator config,

Member idMember,

GeneratorCreationContext creationContext) {

this(config, idMember);

// called to create a generator for a regular attribute
public UuidGenerator(
org.hibernate.annotations.UuidGenerator config,

Member member,
GeneratorCreationContext creationContext) {
this(config, idMember);

@Override

public EnumSet<EventType> getEventTypes() {

// UUIDs are only assigned on insert, and never regenerated
return INSERT_ONLY;

@Override

public Object generate(SharedSessionContractImplementor session, Object owner, Object currentValue, EventType

eventType) {

// actually generate a UUID and transform it to the required type
return valueTransformer.transform(generator.generateUuid(session));

122

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/Generated.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/GeneratedColumn.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/CurrentTimestamp.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/CreationTimestamp.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/UpdateTimestamp.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/UuidGenerator.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/UuidGenerator.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/id/uuid/UuidGenerator.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/id/uuid/UuidGenerator.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/id/uuid/UuidGenerator.html

You can find out more about custom generators from the Javadoc for @I dGeneratorType and for org.hibernate.generator.

9.8. Naming strategies

When working with a pre-existing relational schema, it’s usual to find that the column and table naming conventions used in the schema
don’t match Java’s naming conventions.

Of course, the @Table and @Column annotations let us explicitly specify a mapped table or column name. But we would prefer to avoid
scattering these annotations across our whole domain model.

Therefore, Hibernate lets us define a mapping between Java naming conventions, and the naming conventions of the relational schema.
Such a mapping is called a naming strategy.

First, we need to understand how Hibernate assigns and processes names.

« Logical naming is the process of applying naming rules to determine the logical names of objects which were not explicitly assigned
names in the O/R mapping. That is, when there’s no @Table or @olumn annotation.

« Physical naming is the process of applying additional rules to transform a logical name into an actual "physical" name that will be used
in the database. For example, the rules might include things like using standardized abbreviations, or trimming the length of identifiers.

Thus, there’s two flavors of naming strategy, with slightly different responsibilities. Hibernate comes with default implementations of these
interfaces:

Flavor Default implementation

An ImplicitNamingStrategy is responsible for assigning a logical name A default strategy which implements the rules defined by JPA
when none is specified by an annotation

APhysicalNamingStrategy is responsible for transforming a logical Atrivial implementation which does no processing
name and producing the name used in the database

We happen to not much like the naming rules defined by JPA, which specify that mixed case and camel case identifiers
should be concatenated using underscores. We bet you could easily come up with a much better ImplicitNamingStrategy
than that! (Hint: it should always produce legit mixed case identifiers.)

The popular PhysicalNamingStrategySnakeCaseImpl produces snake case identifiers.

Custom naming strategies may be enabled using the configuration properties we already mentioned without much explanation back in
Minimizing repetitive mapping information.

Table 9.6: Naming strategy configuration

Configuration property name Purpose
hibernate.implicit_naming_strategy Specifies the ImplicitNamingStrategy
hibernate.physical_naming_strategy Specifies the PhysicalNamingStrategy

9.9. Spatial datatypes

Hibernate Spatial augments the built-in basic types with a set of Java mappings for OGC spatial types.

« Geolatte-geom defines a set of Java types implementing the OGC spatial types, and codecs for translating to and from database-native
spatial datatypes.
« Hibernate Spatial itself supplies integration with Hibernate.

To use Hibernate Spatial, we must add it as a dependency, as described in Optional dependencies.

Then we may immediately use Geolatte-geom and JTS types in our entities. No special annotations are needed:

import org.locationtech.jts.geom.Point;
import jakarta.persistence.x*;

123

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/boot/model/naming/ImplicitNamingStrategy.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/boot/model/naming/PhysicalNamingStrategy.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/boot/model/naming/PhysicalNamingStrategySnakeCaseImpl.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/MappingSettings.html#IMPLICIT_NAMING_STRATEGY
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/cfg/MappingSettings.html#PHYSICAL_NAMING_STRATEGY
https://www.ogc.org
https://github.com/GeoLatte/geolatte-geom
https://docs.hibernate.org/orm/8.0/userguide/html_single/#spatial

@Entity
class Event {

Event() {3}

Event(String name, Point location) {
this.name = name;
this.location = location;

@Id @GeneratedValue
Long id;

String name;

Point location;

The generated DDL uses geometry as the type of the column mapped by location:

create table Event (
id bigint not null,
location geometry,
name varchar(255),
primary key (id)

Hibernate Spatial lets us work with spatial types just as we would with any of the built-in basic attribute types.

var geometryFactory = new GeometryFactory();

Point point = geometryFactory.createPoint(new Coordinate(10, 5));
session.persist(new Event("Hibernate ORM presentation", point));

But what makes this powerful is that we may write some very fancy queries involving functions of spatial types:

Polygon triangle =
geometryFactory.createPolygon(
new Coordinatel[] {
new Coordinate(9, 4),
new Coordinate(11, 4),
new Coordinate(11, 20),
new Coordinate(9, 4)

)3
Point event =
session.createQuery("select location from Event where within(location, :zone) = true", Point.class)
.setParameter("zone", triangle)
.getSingleResult();

Here, within() is one of the functions for testing spatial relations defined by the OpenGlIS specification. Other such functions include
touches(), intersects(), distance(), boundary(), etc. Not every spatial relation function is supported on every database. A matrix of
support for spatial relation functions may be found in the User Guide.

If you want to play with spatial functions on H2, run the following code first:

sessionFactory.inTransaction(session -> {
session.doWork(connection -> {
try (var statement = connection.createStatement()) {
statement.execute("create alias if not exists h2gis_spatial for
\"org.h2gis.functions.factory.H2GISFunctions.load\"");
statement.execute("call h2gis_spatial()");

1
)

124

https://docs.hibernate.org/orm/8.0/userguide/html_single/#spatial-configuration-dialect-features

9.10. Ordered and sorted collections and map keys

Java lists and maps don’t map very naturally to foreign key relationships between tables, and so we tend to avoid using them to represent

associations between our entity classes. But if you feel like you really need a collection with a fancier structure than Set, Hibernate does

have options.

For more detail about the use of these annotations, please refer to this post on the Hibernate blog.

The following options let us map the index of a List or key of a Map to a column, and are used with:

* @ElementCollection, or

« on the owning side of an association.

They should not be used on the unowned (that is, mappedBy) side of an association.

Annotation

@0rderColumn

@ListIndexBase

@MapKeyColumn

@MapKeyJoinColumn

Table 9.7: Annotations for mapping lists and maps

Purpose

Specifies the column used to maintain the order of a list
The column value for the first element of the list (zero by default)
Specifies the column used to persist the keys of a map (used when the key is of basic type)

Specifies the column used to persist the keys of a map (used when the key is an entity)

The name of the @0rderColumn or @apKeyColumn may be defaulted, for example:

@ManyToMany

@0rderColumn // order of list is persistent

List<Author> authors

new ArrayList<>();

But it’s usually better to specify the column name explicitly:

@ElementCollection

@orderColumn(name="tag_order")
@ListIndexBase(1) // order column and base value

List<String> tags;

Such mappings can get pretty complicated:

@ElementCollection
@CollectionTable(name = "author_bios", // table name
joinColumns = @JoinColumn(name = "book_isbn")) // column holding foreign key of owner

@Column(name="bio")

// column holding map values

@MapKeyJoinColumn(name="author_ssn") // column holding map keys
Map<Author,String> biographies;

As you can imagine, we think you should use such mappings very sparingly, if at all.

For a Map representing an unowned @0neToMany association, the column holding the key of the map must also be mapped on the owning

side, usually by an attribute of the target entity. In this case we use a different annotation:

Annotation

@MapKey

Table 9.8: Annotation for mapping an entity attribute to a map key

Purpose

Specifies an attribute of the target entity which acts as the key of the map

Note that @MapKey specifies a field or property name, not a column name.

@0OneToMany (mappedBy = Book_.PUBLISHER)
@MapKey(name = Book_.TITLE) // the key of the map is the title of the book
Map<String,Book> booksByTitle = new HashMap<>();

JPA-standard

v

X
v
v

JPA-standard

v

125

https://in.relation.to/2024/11/12/-what-collection/
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/ListIndexBase.html

In fact, @apKey may also be used for owned collections.
Now, let’s introduce a little distinction:

« an ordered collection is one with an ordering maintained in the database, and
» asorted collection is one which is sorted in Java code.

These annotations allow us to specify how the elements of a collection should be ordered as they are read from the database:

Table 9.9: Annotations for ordered collections

Annotation Purpose JPA-standard
@0rderBy Specifies a fragment of JPQL used to order the collection V4
@sQLOrder Specifies a fragment of SQL used to order the collection X

On the other hand, the following annotations specify how a collection should be sorted in memory, and are used for collections of type
SortedSet or SortedMap:

Table 9.10: Annotations for sorted collections

Annotation Purpose JPA-standard
@SortNatural Specifies that the elements of a collection are Comparable X
@SortComparator Specifies a Comparator used to sort the collection b 4

Under the covers, Hibernate uses a TreeSet or TreeMap to maintain the collection in sorted order.

The unowned (mappedBy) side of a bidirectional association is not responsible for specifying column mappings. So it’s
wrong in principle to use @0rderColumn or @apKeyColumn on the unowned side of an association mapping. But for
é unowned collections, we may use @0rderBy or @apKey instead. That is:

* You can use @0rderColumn or @apKeyColumn with an @lementCollection, owned @anyToMany, or owned @neToMany.

* But use @0rderBy or @apKey when it’s an unowned @anyToMany or @0neToMany.

9.11. Any mappings

An @Any mapping is a sort of polymorphic many-to-one association where the target entity types are not related by the usual entity
inheritance. The target type is distinguished using a discriminator value stored on the referring side of the relationship.

This is quite different to discriminated inheritance where the discriminator is held in the tables mapped by the referenced entity hierarchy.

For example, consider an Order entity containing Payment information, where a Payment might be a CashPayment or a CreditCardPayment:

interface Payment { ... }
@Entity

class CashPayment { ... }
@Entity

class CreditCardPayment { ... }

In this example, Payment is not be declared as an entity type, and is not annotated @Entity. It might even be an interface, or at most just a
mapped superclass, of CashPayment and CreditCardPayment. So in terms of the object/relational mappings, CashPayment and
CreditCardPayment would not be considered to participate in the same entity inheritance hierarchy.

On the other hand, CashPayment and CreditCardPayment do have the same identifier type. This is important.

An @Any mapping would store the discriminator value identifying the concrete type of Payment along with the state of the associated Order,
instead of storing it in the table mapped by Payment.

@Entity
class Order {

126

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/SortNatural.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/SortComparator.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/Any.html

@Any

@AnyKeyJavaClass(UUID.class) //the foreign key type
@JoinColumn(name="payment_id") // the foreign key column
@Column(name="payment_type") // the discriminator column

// map from discriminator values to target entity types
@AnyDiscriminatorValue(discriminator="CASH", entity=CashPayment.class)
@AnyDiscriminatorValue(discriminator="CREDIT", entity=CreditCardPayment.class)
Payment payment;

It’s reasonable to think of the "foreign key" in an @Any mapping as a composite value made up of the foreign key and discriminator taken
together. Note, however, that this composite foreign key is only conceptual and cannot be declared as a physical constraint on the
relational database table.

There are a number of annotations which are useful to express this sort of complicated and unnatural mapping:

Table 9.11: Annotations for @ny mappings

Annotations Purpose

@Any Declares that an attribute is a discriminated polymorphic association
mapping

@AnyDiscriminator Specify the Java type of the discriminator

@JdbcType or @JdbcTypeCode Specify the JDBC type of the discriminator

@AnyDiscriminatorValue Specifies how discriminator values map to entity types

@Column or @Formula Specify the column or formula in which the discriminator value is
stored

@AnyKeyJavaType or @nyKeyJavaClass Specify the Java type of the foreign key (that is, of the ids of the target
entities)

@AnyKeyJdbcType or @nyKeyJdbcTypeCode Specify the JDBC type of the foreign key

@JoinColumn Specifies the foreign key column

Of course, @Any mappings are disfavored, except in extremely special cases, since it’s much more difficult to enforce referential integrity at
the database level.

There’s also currently some limitations around querying @Any associations in HQL. This is allowed:

from Order ord
join CashPayment cash
on id(ord.payment) = cash.id

° Polymorphic association joins for @ny mappings are not currently implemented.
Further information may be found in the User Guide.

9.12. Selective column lists in inserts and updates

By default, Hibernate generates insert and update statements for each entity during boostrap, and reuses the same insert statement every
time an instance of the entity is made persistent, and the same update statement every time an instance of the entity is modified.

This means that:

« if an attribute is null when the entity is made persistent, its mapped column is redundantly included in the SQL insert, and

« worse, if a certain attribute is unmodified when other attributes are changed, the column mapped by that attribute is redundantly
included in the SQL update.

Most of the time, this just isn’t an issue worth worrying about. The cost of interacting with the database is usually dominated by the cost of a
round trip, not by the number of columns in the insert or update. But in cases where it does become important, there are two ways to be

127

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/Any.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/AnyDiscriminator.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/AnyDiscriminatorValue.html
https://docs.hibernate.org/orm/8.0/userguide/html_single/#associations-any

more selective about which columns are included in the SQL.

The JPA-standard way is to indicate statically which columns are eligible for inclusion via the @Column annotation. For example, if an entity
is always created with an immutable creationDate, and with no completionDate, then we would write:

@Column(updatable=false) LocalDate creationDate;
@Column(insertable=false) LocalDate completionDate;

This approach works quite well in many cases, but often breaks down for entities with more than a handful of updatable columns.

An alternative solution is to ask Hibernate to generate SQL dynamically each time an insert or update is executed. We do this by annotating
the entity class.

Table 9.12: Annotations for dynamic SQL generation

Annotation Purpose
@ynamicInsert Specifies that an insert statement should be generated each time an entity is made persistent
@ynamicUpdate Specifies that an update statement should be generated each time an entity is modified

It’s important to realize that, while @ynamicInsert has no impact on semantics, the more useful @ynamicUpdate annotation does have a
subtle side effect.

transactions concurrently reading and selectively updating a given instance of the entity. In principle, this might lead to a

: The wrinkle is that if an entity has no version property, @ynamicUpdate opens the possibility of two optimistic
row with inconsistent column values after both optimistic transactions commit successfully.

Of course, this consideration doesn’t arise for entities with a @version attribute.

But there’s a solution! Well-designed relational schemas should have constraints to ensure data integrity. That’s true no
matter what measures we take to preserve integrity in our program logic. We may ask Hibernate to add a check constraint
to our table using the @Check annotation. Check constraints and foreign key constraints can help ensure that a row never
contains inconsistent column values.

9.13. Using the bytecode enhancer

Hibernate’s bytecode enhancer enables the following features:

« attribute-level lazy fetching for basic attributes annotated @Basic(fetch=LAZY) and for lazy non-polymorphic associations,
« interception-based—instead of the usual snapshot-based—detection of modifications.

In addition, use of the bytecode enhancer relaxes the usual requirement that entity and embeddable classes have default constructors. If a
class annotated @Entity, @appedSuperclass, or @mbeddable has no default constructor, the bytecode enhancer will add it.

To use the bytecode enhancer, we must add the Hibernate plugin to our gradle build:

plugins {
id "org.hibernate.orm" version "8.0.0.Alphal"

}

hibernate {
enhancement {}

}

Some online documentation (including previous versions of the present one) suggest to use hibernate { enhancement 3},
which will not work as it is interpreted by Gradle as a (pointless) getter call instead of actual configuration. That form will
result in bytecode enhancement NOT happening (unfortunately silently). To enable bytecode enhancement, make sure to
always use the block form (with {}).

Consider this field:

@Entity
class Book {

128

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/DynamicInsert.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/DynamicUpdate.html
https://docs.hibernate.org/orm/8.0/userguide/html_single/#BytecodeEnhancement

@Basic(optional = false, fetch = LAZY)
@Column(length = LONG32)
String fullText;

The fullText field maps to a clob or text column, depending on the SQL dialect. Since it’s expensive to retrieve the full book-length text,
we’ve mapped the field fetch=LAzY, telling Hibernate not to read the field until it’s actually used.

« Without the bytecode enhancer, this instruction is ignored, and the field is always fetched immediately, as part of the initial select that
retrieves the Book entity.

« With bytecode enhancement, Hibernate is able to detect access to the field, and lazy fetching is possible.

By default, Hibernate fetches all lazy fields of a given entity at once, in a single select, when any one of them is accessed.
Using the @LazyGroup annotation, it’s possible to assign fields to distinct "fetch groups", so that different lazy fields may
be fetched independently.

Similarly, interception lets us implement lazy fetching for non-polymorphic associations without the need for a separate proxy object.
However, if an association is polymorphic, that is, if the target entity type has subclasses, then a proxy is still required.
Interception-based change detection is a nice performance optimization with a slight cost in terms of correctness.

« Without the bytecode enhancer, Hibernate keeps a snapshot of the state of each entity after reading from or writing to the database.
When the session flushes, the snapshot state is compared to the current state of the entity to determine if the entity has been modified.
Maintaining these snapshots does have an impact on performance.

« With bytecode enhancement, we may avoid this cost by intercepting writes to the field and recording these modifications as they
happen.

This optimization isn’t completely transparent, however.

Interception-based change detection is less accurate than snapshot-based dirty checking. For example, consider this
attribute:

é byte[] image;

Interception is able to detect writes to the image field, that is, replacement of the whole array. It’s not able to detect
modifications made directly to the elements of the array, and so such modifications may be lost.

Hibernate’s extended bytecode enhancement feature has been deprecated, primarily because it relies on assumptions
and behaviors that often require a broader runtime scope than what Hibernate alone can reliably provide, similar to

o container-based environments such as Quarkus or WildFly. Applications which make use of this feature should instead
use proper object-oriented encapsulation, exposing managed state via getters and setters.

9.14. Named fetch profiles

We’ve already seen two different ways to override the default fetching strategy for an association:

+ JPA entity graphs, and
« the join fetch clause in HQL, or, equivalently, the method From. fetch() in the criteria query API.

A third way is to define a named fetch profile. First, we must declare the profile, by annotating a class or package @FetchProfile:

@FetchProfile(name = "EagerBook")
@Entity
class Book { ... }

Note that even though we’ve placed this annotation on the Book entity, a fetch profile—unlike an entity graph—isn’t "rooted" at any
particular entity.

We may specify association fetching strategies using the fetchOverrides member of the @FetchProfile annotation, but frankly it looks so
messy that we’re embarrassed to show it to you here.

0 Similarly, a JPA entity graph may be defined using @NamedEntityGraph. But the format of this annotation is even worse

129

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/LazyGroup.html
https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/annotations/FetchProfile.html

than @FetchProfile(fetchOverrides=..), so we can’t recommendit. &

A better way is to annotate an association with the fetch profiles it should be fetched in:

@FetchProfile(name = "EagerBook")
@Entity
class Book {

@anyToOne(fetch = LAZY)
@FetchProfileOverride(profile = Book_.PROFILE_EAGER_BOOK, mode = JOIN)
Publisher publisher;

@ManyToMany
@FetchProfileOverride(profile = Book_.PROFILE_EAGER_BOOK, mode = JOIN)
Set<Author> authors;

@Entity
class Author {

@0OneToOne
@FetchProfileOverride(profile = Book_.PROFILE_EAGER_BOOK, mode = JOIN)
Person person;

Here, once again, Book_.PROFILE_EAGER_BOOK is generated by Hibernate Processor, and is just a constant with the value "EagerBook".

For collections, we may even request subselect fetching:

@FetchProfile(name = "EagerBook")
@FetchProfile(name = "BookWithAuthorsBySubselect")
@Entity

class Book {

@0OneToOne
@FetchProfileOverride(profile
Person person;

Book_.PROFILE_EAGER_BOOK, mode = JOIN)

@ManyToMany

@FetchProfileOverride(profile = Book_.PROFILE_EAGER_BOOK, mode = JOIN)

@FetchProfileOverride(profile = Book_.BOOK_WITH_AUTHORS_BY_SUBSELECT,
mode = SUBSELECT)

Set<Author> authors;

We may define as many different fetch profiles as we like.

Table 9.13: Annotations for defining fetch profiles

Annotation Purpose

@FetchProfile Declares a named fetch profile, optionally including a list of @FetchOverrides
@FetchProfile.FetchOverride Declares a fetch strategy override as part of the @FetchProfile declaration
@FetchProfileOverride Specifies the fetch strategy for the annotated association, in a given fetch profile

Afetch profile must be explicitly enabled for a given session by passing the name of the profile to enableFetchProfile():

130

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/Session.html#enableFetchProfile(java.lang.String)

session.enableFetchProfile(Book_.PROFILE_EAGER_BOOK);
Book eagerBook = session.find(Book.class, bookId);

Alternatively, an instance of EnabledFetchProfile may be obtained in a type safe way from the static metamodel, and applied to the
session:

Book_._FagerBook.enable(session);
Book eagerBook = session.find(Book.class, bookId);

Even better, the EnabledFetchProfile may be passed as a FindOption:

Book eagerBook = entityManager.find(Book.class, bookId, Book_._EagerBook);

So why or when might we prefer named fetch profiles to entity graphs? Well, it’s really hard to say. It’s nice that this feature exists, and if you
love it, that’s great. But Hibernate offers alternatives that we think are more compelling most of the time.

The one and only advantage unique to fetch profiles is that they let us very selectively request subselect fetching. We can’t do that with
entity graphs, and we can’t do it with HQL.

There’s a special built-in fetch profile named org.hibernate.defaultProfile which is defined as the profile with
@FetchProfileOverride(mode=JOIN) applied to every eager @anyToOne or @neToOne association. If you enable this
profile:

session.enableFetchProfile("org.hibernate.defaultProfile");

Then outer joins for such associations will automatically be added to every HQL or criteria query. This is nice if you can’t
be bothered typing out those join fetches explicitly. And in principle it even helps partially mitigate the problem of JPA
having specified the wrong default for the fetch member of @anyToOne.

131

https://docs.hibernate.org/orm/8.0/javadocs/org/hibernate/EnabledFetchProfile.html

Chapter 10. Credits

The full list of contributors to Hibernate ORM can be found on the GitHub repository.
The following contributors were involved in this documentation:

+ Gavin King

132

https://github.com/hibernate/hibernate-orm/graphs/contributors

	A Short Guide to Hibernate 7
	Table of Contents
	Preface
	Chapter 1. Introduction
	1.1. Hibernate and JPA
	1.2. Writing Java code with Hibernate
	1.3. Hello, Hibernate
	1.4. Entities
	1.5. Stateful and stateless sessions
	1.6. Organizing persistence logic
	1.7. Testing persistence logic
	1.8. Overview

	Chapter 2. Configuration and bootstrap
	2.1. Including Hibernate in your project build
	2.2. Optional dependencies
	2.3. Configuration using JPA XML
	2.4. Programmatic configuration using JPA API
	2.5. Entity discovery
	2.6. Configuration using Hibernate properties file
	2.7. Basic configuration settings
	2.8. Automatic schema export
	2.9. Logging the generated SQL
	2.10. Minimizing repetitive mapping information
	2.11. Quoting SQL identifiers
	2.12. Nationalized character data in SQL Server
	2.13. Date and time types and JDBC

	Chapter 3. Entities
	3.1. Entity classes
	3.2. Access types
	3.3. Entity class inheritance
	3.4. Identifier attributes
	3.5. Generated identifiers
	3.6. Natural keys as identifiers
	3.7. Composite identifiers
	3.8. Version attributes
	3.9. Natural id attributes
	3.10. Basic attributes
	3.11. Enumerated types
	3.12. Converters
	3.13. Compositional basic types
	3.14. Date and time types, and time zones
	3.15. Embeddable objects
	3.16. Associations
	3.17. Many-to-one
	3.18. One-to-one (first way)
	3.19. One-to-one (second way)
	3.20. Many-to-many
	3.21. Collections of basic values and embeddable objects
	3.22. Collections mapped to SQL arrays
	3.23. Collections mapped to a separate table
	3.24. Summary of annotations
	3.25. equals() and hashCode()

	Chapter 4. Object/relational mapping
	4.1. Mapping entity inheritance hierarchies
	4.2. Mapping to tables
	4.3. Mapping entities to tables
	4.4. Mapping associations to tables
	4.5. Mapping to columns
	4.6. Mapping basic attributes to columns
	4.7. Mapping associations to foreign key columns
	4.8. Mapping primary key joins between tables
	4.9. Column lengths and adaptive column types
	4.10. LOBs
	4.11. Mapping embeddable types to UDTs or to JSON
	4.12. Summary of SQL column type mappings
	4.13. Mapping to formulas
	4.14. Derived Identity
	4.15. Adding constraints

	Chapter 5. Interacting with the database
	5.1. Persistence contexts
	5.2. Creating a session
	5.3. Managing transactions
	5.4. Operations on the persistence context
	5.5. Cascading persistence operations
	5.6. Proxies and lazy fetching
	5.7. Entity graphs and eager fetching
	5.8. Controlling lookup by id
	5.9. Controlling state retrieval during merge
	5.10. Flushing the session
	5.11. Lifecycle callbacks and entity listeners
	5.12. Transient vs detached
	5.13. Interacting directly with JDBC
	5.14. What to do when things go wrong

	Chapter 6. Executing queries
	6.1. HQL queries
	6.2. Query parameters
	6.3. Auto-flush
	6.4. Criteria queries
	6.5. A more comfortable way to write criteria queries
	6.6. Native SQL queries
	6.7. Restrictions and ordering
	6.8. Augmentation
	6.9. Limits and pagination
	6.10. Key-based pagination
	6.11. Representing projection lists
	6.12. Named queries

	Chapter 7. Compile-time tooling
	7.1. The static metamodel
	7.2. Finder methods, query methods, and repositories
	7.3. Named queries and Hibernate Processor
	7.4. Generated query methods
	7.5. Generating query methods as instance methods
	7.6. Generated finder methods
	7.7. Paging, ordering, and restrictions
	7.8. Key-based pagination
	7.9. Query and finder method return types
	7.10. An alternative approach

	Chapter 8. Tuning and performance
	8.1. Tuning the connection pool
	8.2. JDBC fetch size
	8.3. Enabling statement batching
	8.4. Association fetching
	8.5. Batch fetching and subselect fetching
	8.6. Join fetching
	8.7. The second-level cache
	8.8. Specifying which data is cached
	8.9. Caching by natural id
	8.10. Caching and association fetching
	8.11. Configuring the second-level cache provider
	8.12. Caching query result sets
	8.13. Second-level cache management
	8.14. Session cache management
	8.15. Stateless sessions
	8.16. Optimistic and pessimistic locking
	8.17. Collecting statistics
	8.18. Using Java Flight Recorder
	8.19. Tracking down slow queries
	8.20. Adding indexes
	8.21. Dealing with denormalized data
	8.22. Reactive programming with Hibernate

	Chapter 9. Advanced Topics
	9.1. Filters
	9.2. Soft-delete
	9.3. Multi-tenancy
	9.4. Read-only replicas
	9.5. Using custom-written SQL
	9.6. Handling database-generated columns
	9.7. User-defined generators
	9.8. Naming strategies
	9.9. Spatial datatypes
	9.10. Ordered and sorted collections and map keys
	9.11. Any mappings
	9.12. Selective column lists in inserts and updates
	9.13. Using the bytecode enhancer
	9.14. Named fetch profiles

	Chapter 10. Credits

