¥, HIBER

Introducing Hibernate Data Repositories

Version 7.3.0.CR1

Table of Contents

=] o< 1
1 Programming MOdel e e e e e e e 2
1.1, REPOSIHOIY INTEIACES. . ettt ettt e e e e e e e e 3
1.2. Organizing PersisteNCE OPEratioNSttt ettt e et e et 4
1.3 Default MEthOds. . ..o e e e e e 5
1.4. Resource accessor MEthOAS i e e e 5
1.5, LifecyCle MEthods e e e e 6
1.6, AULOMAtiC QUEIY MEthOOS . ettt ettt et e et e e e e e e e 6
1.7.Annotated qUEry Methods et 7
1.8, @BY AN @PAIAM « .« vt ettt ettt ettt et et e e e e e e e e e e e e e e e 8
2. Configuration and INTEEIatioNttt ettt e et e et e e e e e e e e e e e 10
0 o [Tox oY1 U o PP 10
2.2, EXClUuding Classes frOm PrOCESSING. . . .o v vttt ettt et ettt e e e et e et e e e e e e 11
2.3.Configuring HIbernate ORM et et e e e e e e e e 11
2.4, ObtaiNiNg @ STAateleSSSESSI0N «t v vttt et ettt ettt ettt et e e e e 12
2.5, INJECHING @ TP OSI IOy ..ttt ettt et et e e e e e e e e e e 12
2.6.Integration With Jakarta EEo e e e e 12
3. Pagination and dynamic SOMtINGttt e e e e e 14
3.l Thestatic metamodel e e e 14
302 DY NAMIC SOITING . . o ettt et ettt et e e e e e e e e e e e e e e e e 14
70 T 4T PP 15
3.4, Offset-based Pagination e e e e 15
3.5 Key-based Pagination e e e e e 16
3.6, DYNAMIC FESEMICHIONS & . .o ettt ettt e ettt et e e e e e e e e e e e e 17
3.7. Advanced CoNtrol OVEr QUEIYING.ttt ettt ettt et e e e e e e e e e e e e e e e et e e 17
4 REACHIVE FEPOSITIONIES & ..ottt ettt et et e e e e e e e e e e e e e e 19
4.1. DefiniNg @ reaCtiVe FEPOSITONY . . .t ettt ettt e et e e et e e e et e e e e e e 19
4.2. 0btaining @ reacCtive rEPOSITONYottt ettt e et et e e e e e e e e e e e 19

4.3. Calling @ reactive rePOSITONYottt e e ettt e e e e e 20

Preface

Jakarta Data is a new specification for repositories. A repository, in this context, means an interface exposing a typesafe API for interacting
with a datastore. Jakarta Data is designed to accommodate a diverse range of database technologies, from relational databases, to
document databases, to key-value stores and more.

Hibernate Data Repositories is an implementation of Jakarta Data targeting relational databases and backed by Hibernate ORM. Entity
classes are mapped using the familiar annotations defined by Jakarta Persistence, and queries may be written in the Hibernate Query
Language, a superset of the Jakarta Persistence Query Language (JPQL). On the other hand, the programming model for interacting with
the database is quite different in Jakarta Data from the model you might be used to from Jakarta Persistence.

Therefore, this document will show you a different way to use Hibernate.

The coverage of Jakarta Data is intentionally inexhaustive. If exhaustion is sought, this document should be read in conjunction with the
specification, which we’ve worked hard to keep readable.

If you are unfamiliar with Hibernate, this document should be read in conjunction with:

« the Short Guide to Hibernate, and
« the Guide to Hibernate Query Language.

https://jakarta.ee/specifications/data/1.0/jakarta-data-1.0
https://jakarta.ee/specifications/data/1.0/jakarta-data-1.0
https://docs.hibernate.org/orm/7.3/introduction/html_single/
https://docs.hibernate.org/orm/7.3/querylanguage/html_single/

Chapter 1. Programming model

Jakarta Data and Jakarta Persistence both represent data in a typesafe way, using entity classes. Since Hibernate’s implementation of
Jakarta Data is backed by access to a relational database, these entity classes are mapped using the annotations defined by Jakarta
Persistence.

For example:

@Entity

public class Book {
@Id
String isbn;

@Basic(optional = false)
String title;

LocalDate publicationDate;

@Basic(optional = false)
String text;

@Enumerated(STRING)
@Basic(optional = false)
Type type = Type.Book;

@anyToOne(optional = false, fetch = LAZY)
Publisher publisher;

@anyToMany (mappedBy = Author_.BOOKS)
Set<Author> authors;

@Entity

public class Author {
@Id
String ssn;

@Basic(optional = false)
String name;

Address address;

@ManyToMany
Set<Book> books;

For more information about mapping entities, see the Short Guide to Hibernate 7.

Jakarta Data also works with entities defined using similarly-named annotations defined by Jakarta NoSQL. But in this
document we’re using Hibernate Data Repositories, so all mapping annotations should be understood to be the ones

o defined in jakarta.persistence ororg.hibernate.annotations. For more information about entities in Jakarta Data,
please consult chapter 3 of the specification.

Furthermore, queries may be expressed in HQL, Hibernate’s superset of the Jakarta Persistence Query Language (JPQL).

The Jakarta Data specification defines a simple subset of JPQL called, appropriately, JDQL. JDQL is mostly relevant to
non-relational datastores; an implementation of Jakarta Data backed by access to relational data is normally expected to

6 support a much larger subset of JPQL. Indeed, Hibernate Data Repositories supports a superset of JPQL. So, even though
we put rather a large amount of effort into advocating, designing, and specifying JDQL, we won’t talk much about it here.
For information about JDQL, please consult chapter 5 of the Jakarta Data specification.

To learn more about HQL and JPQL, see the Guide to Hibernate Query Language.

This is where the similarity between Jakarta Persistence and Jakarta Data ends. The following table contrasts the two programming
models.

https://docs.hibernate.org/orm/7.3/introduction/html_single/#entities
https://docs.hibernate.org/orm/7.3/querylanguage/html_single/

Persistence contexts
Gateway
Underlying implementation

Persistence operations

SQL execution
Updates

Operation cascading
Lazy fetching

Validation of JPQL

Persistence
Stateful
EntityManager interface
Session

Generic methods like find(), persist(), merge(),
remove ()

During flush
Usually implicit (dirty checking during flush)
Depends on CascadeType
Implicit

Runtime

Data
Stateless
User-written @Repository interface
StatelessSession

Typesafe user-written methods annotated @Find,
@Insert, @Update, @Save, @Delete

Immediate
Always explicit (by calling @Update method)
Never
Explicit using StatelessSession. fetch()

Compile time

The fundamental difference here is that Jakarta Data does not feature stateful persistence contexts. Among other consequences:

» entity instances are always detached, and so

« updates require an explicit operation, and

« there’s no transparent lazy association fetching.

It’s important to understand that a repository in Hibernate Data Repositories is backed by a StatelessSession, not by a Jakarta Persistence

EntityManager.

There’s only one portable way to fetch an association in Jakarta Data, and that’s by using a JPQL join fetch clause, in a
@Query annotation. The specification does not provide a portable way to fetch an association lazily. To fetch an
association, we need to call the StatelessSession directly. This really isn’t as bad as it sounds; overuse of lazy fetching is
associated with poor performance due to many round trips to the database server.

A future release of Jakarta Data will feature repositories backed by Jakarta Persistence stateful persistence contexts, but
this functionality did not make the cut for Jakarta Data 1.0.

The second big difference is that instead of providing a generic interface like EntityManager that’s capable of performing persistence
operations for any entity class, Jakarta Data requires that each interaction with the database go via a user-written method specific to just
one entity type. The method is marked with annotations allowing Hibernate to fill in the method implementation.

For example, whereas Jakarta Persistence defines the methods find() and persist() of EntityManager, in Jakarta Data the application
programmer is required to write an interface like the following:

@Repository
interface Library {
@Find

Book book(String isbn);

@Insert

void add(Book book);

This is our first example of a repository.

1.1. Repository interfaces

A repository interface is an interface written by you, the application programmer, and annotated @Repository. The implementation of the
repository interface is provided by a Jakarta Data provider, in our case, by Hibernate Data Repositories.

The Jakarta Data specification does not say how this should work, but in Hibernate Data Repositories, the implementation is generated by
an annotation processor. In fact, you might already be using this annotation processor: it’s just HibernateProcessor from the module which
used to be called hibernate-jpamodelgen, and has now been renamed hibernate-processor in Hibernate 7.

https://docs.hibernate.org/orm/7.3/javadocs/org/hibernate/Session.html
https://docs.hibernate.org/orm/7.3/javadocs/org/hibernate/StatelessSession.html
https://docs.hibernate.org/orm/7.3/javadocs/org/hibernate/StatelessSession.html#fetch(java.lang.Object)
https://hibernate.org/orm/processor/

That’s right, this fancy thing I’'m calling Hibernate Data Repositories is really just a new feature of Hibernate’s venerable
static metamodel generator. If you’re already using the JPA static metamodel in your project, you already have Jakarta
Data at your fingertips. If you don’t, we’ll see how to set it up in the next chapter.

Unlike a language model, a Jakarta Data provider can’t generate an implementation of any arbitrary method based only on vibes.
Therefore, the methods of a repository interface must fall into one of the following categories:

 default methods,

« lifecycle methods annotated @Insert, @Update, @elete, or @Save,
* automatic query methods annotated @Find,

* annotated query methods annotated @Query or @SQL, and

« resource accessor methods.

For users migrating from Spring Data, Jakarta Data also provides a Query by Method Name facility. We don’t recommend
this approach for new code, since it leads to extremely verbose and unnatural method names for anything but the most
trivial examples.

We’ll discuss each of these kinds of method soon. But first we need to ask a more basic question: how are persistence operations organized
into repositories, and how do repository interfaces relate to entity types? The—perhaps surprising—answer is: it’s completely up to you.

1.2. Organizing persistence operations

Jakarta Data lets you freely assign persistence operations to repositories according to your own preference. In particular, Jakarta Data does
not require that a repository interface inherit a built-in supertype declaring the basic "CRUD" operations, and so it’s not necessary to have a
separate repository interface for each entity. You’re permitted, for example, to have a single Library interface instead of BookRepository,
AuthorRepository, and PublisherRepository

Thus, the whole programming model is much more flexible than older approaches such as Spring Data, which require a repository interface
per entity class, or, at least, per so-called "aggregate".

aggregates, and you should avoid attempting to shoehorn your relational tables into this inappropriate way of thinking

g The concept of an "aggregate" makes sense in something like a document database. But relational data does not have
about data.

As a convenience, especially for users migrating from older frameworks, Jakarta Data does define the BasicRepository and CrudRepository
interfaces, and you can use them if you like. But in Jakarta Data there’s not much special about these interfaces; their operations are
declared using the same annotations you’ll use to declare methods of your own repositories. This older, less-flexible approach is illustrated
in the following example.

// old way

@Repository
interface BookRepository
extends CrudRepository<Book,String> {
// query methods

@Repository
interface AuthorRepository
extends CrudRepository<Author,String> {
// query methods

We won’t see BasicRepository and CrudRepository again in this document, because they’re not necessary, and because they implement
the older, completely uncool way of doing things.

Instead, our repositories will often group together operations dealing with several related entities, even when the entities don’t have a
single "root". This situation is extremely common in relational data models. In our example, Book and Author are related by a @anyToMany
association, and are both "roots".

// new way

@Repository

interface Publishing {
@Find
Book book(String isbn);

@Find
Author author(String ssn);

@Insert
void publish(Book book);

@Insert
void create(Author author);

// query methods

Now let’s walk through the different kinds of method that a repository interface might declare, beginning with the easiest kind. If the
following summary is insufficient, you’ll find more detailed information about repositories in chapter 4 of the Jakarta Data specification,
and in the Javadoc of the relevant annotations.

1.3. Default methods
Adefault method is one you implement yourself, and there’s nothing special about it.

@Repository
interface Library {
default void hello() {
System.out.println("Hello, World!");

This doesn’t look very useful, at least not unless there’s some way to interact with the database from a default method. For that, we’ll need
to add a resource accessor method.

1.4. Resource accessor methods

Aresource accessor method is one which exposes access to an underlying implementation type. Currently, Hibernate Data Repositories
supports two such implementation types:

1. StatelessSession, for the ordinary sort of repository we’re talking about now, and
2. Mutiny.StatelessSession, for reactive repositories.

So a resource accessor method is just any abstract method which returns StatelessSession. The name of the method doesn’t matter.

StatelessSession session();

This method returns the StatelessSession backing the repository.
Usually, a resource accessor method is called from a default method of the same repository.
default void refresh(Book book) {

session().refresh(book);

This is very useful when we need to gain direct access to the StatelessSession in order to take advantage of the full
power of Hibernate.

Aresource accessor method is also useful when we need to lazily fetch an association.

library.session().fetch(book.authors);

Usually, of course, we want Jakarta Data to take care of interacting with the StatelessSession.

1.5. Lifecycle methods

Jakarta Data 1.0 defines four built-in lifecycle annotations, which map perfectly to the basic operations of the Hibernate StatelessSession:

* @Insert mapsto insert(),

* @Update maps to update(),

* @elete maps to delete(), and
* @Save maps to upsert().

The basic operations of StatelessSession—insert(), update(), delete(), and upsert() —do not have matching
CascadeTypes, and so these operations are never cascaded to associated entities.

A lifecycle method usually accepts an instance of an entity type, and is usually declared void.

@Insert
void add(Book book);

Alternatively, it may accept a list or array of entities. (A variadic parameter is considered an array.)

@Insert
void add(Book. .. books);

A future release of Jakarta Data might expand the list of built-in lifecycle annotations. In particular, we’re hoping to add
@Persist, @Merge, @Refresh, @Lock, and @Remove, mapping to the fundamental operations of EntityManager.

Repositories wouldn’t be useful at all if this was all they could do. Jakarta Data really starts to shine when we start to use it to express
queries.

1.6. Automatic query methods

An automatic query method is usually annotated @Find. The simplest automatic query method is one which retrieves an entity instance by
its unique identifier.

@Find
Book book(String isbn);

The name of the parameter identifies that this is a lookup by primary key (the isbn field is annotated @Id in Book) and so this method will be
implemented to call the get () method of StatelessSession.

match the type of the matching field, HibernateProcessor reports a helpful error at compilation time. This is our first

o If the parameter name does not match any field of the returned entity type, or if the type of the parameter does not
glimpse of the advantages of using Jakarta Data repositories with Hibernate.

If there is no Book with the given isbn in the database, the method throws EmptyResultException. There are two ways around this if that’s
not what we want:

 declare the method to return Optional, or
» annotate the method @jakarta.annotation.Nullable

The first option is blessed by the specification:

@Find
Optional<Book> book(String isbn);

The second option is an extension provided by Hibernate:

@Find @Nullable
Book book(String isbn);

An automatic query method might return multiple results. In this case, the return type must be an array or list of the entity type.

@Find

List<Book> book(String title);

Usually, arguments to a parameter of an automatic query method must match exactly with the field of an entity. However, Hibernate
provides the @Pattern annotation to allow for "fuzzy" matching using like.

@Find
List<Book> books(@Pattern String title);

Furthermore, if the parameter type is a list or array of the entity field type, the resulting query has an in condition.

@Find
List<Book> books(String[] ibsn);

Of course, an automatic query method might have multiple parameters.

@Find
List<Book> book(@Pattern String title, Year yearPublished);

In this case, every argument must match the corresponding field of the entity.

The _ character in a parameter name may be used to navigate associations:

@Find
List<Book> booksPublishedBy(String publisher_name);

However, once our query starts to involve multiple entities, it’s usually better to use an annotated query method.

The @0rderBy annotation allows results to be sorted.

@Find

@orderBy("title")

@orderBy("publisher.name")

List<Book> book(@Pattern String title, Year yearPublished);

This might not look very typesafe at first glance, but—amazingly—the content of the @0rderBy annotation is completely validated at
compile time, as we will see below.
Automatic query methods are great and convenient for very simple queries. For anything that’s not extremely simple, we’re much better off

writing a query in JPQL.

1.7. Annotated query methods

An annotated query method is declared using:

* @uery from Jakarta Data, or

* @HQL or @SQL from org.hibernate.annotations.processing

The @Query annotation is defined to accept JPQL, JDQL, or anything in between. In Hibernate Data Repositories, it accepts arbitrary HQL.

There’s no strong reason to use @HQL in preference to @Query. This annotation exists because the functionality described
here predates the existence of Jakarta Data.

Consider the following example:

@Query("where title like :pattern order by title, isbn")
List<Book> booksByTitle(String pattern);

You might notice that:

¢ The fromclause is not required in JDQL, and is inferred from the return type of the repository method.

« Since Jakarta Persistence 3.2, neither the select clause nor entity aliases (identification variables) are required in JPQL, finally
standardizing a very old feature of HQL.

This allows simple queries to be written in a very compact form.

https://docs.hibernate.org/orm/7.3/javadocs/org/hibernate/annotations/processing/Pattern.html
https://docs.hibernate.org/orm/7.3/javadocs/org/hibernate/annotations/processing/HQL.html
https://docs.hibernate.org/orm/7.3/javadocs/org/hibernate/annotations/processing/SQL.html

Method parameters are automatically matched to ordinal or named parameters of the query. In the previous example, pattern matches
:pattern. In the following variation, the first method parameter matches ?1.

@Query("where title like ?1 order by title, isbn")
List<Book> booksByTitle(String pattern);

You might be imagining that the JPQL query specified within the @uery annotation cannot be validated at compile time, but this is not the
case. HibernateProcessor is not only capable of validating the syntax of the query, but it even typechecks the query completely. This is
much better than passing a string to the createQuery () method of EntityManager, and it’s probably the top reason to use Jakarta Data with
Hibernate.

When a query returns more than one object, the nicest thing to do is package each result as an instance of a Java record type. For example,
we might define a record holding some fields of Book and Author.

record AuthorBookSummary(String isbn, String ssn, String authorName, String title) {}

We need to specify that the values in the select clause should be packaged as instances of AuthorBookSummary. The JPQL specification
provides the select new construct for this.

@Query("select new AuthorBookSummary(b.isbn, a.ssn, a.name, b.title) " +
"from Author a join books b " +
"where title like :pattern")

List<AuthorBookSummary> summariesForTitle(String pattern);

Note that the from clause is required here, since it’s impossible to infer the queried entity type from the return type of the repository
method.

Since this is quite verbose, Hibernate doesn’t require the use of select new, nor of aliases, and lets us write:
@Query("select isbn, ssn, name, title " +
"from Author join books " +

"where title like :pattern")
List<AuthorBookSummary> summariesForTitle(String pattern);

An annotated query method may even perform an update, delete, or insert statement.

@Query("delete from Book " +
"where extract(year from publicationDate) < :year")
int deleteOldBooks(int year);

The method must be declared void, or return int or long. The return value is the number of affected records.
Finally, a native SQL query may be specified using @SqL.

@SQL("select title from books where title like :pattern order by title, isbn")
List<String> booksByTitle(String pattern);

Unfortunately, native SQL queries cannot be validated at compile time, so if there’s anything wrong with our SQL, we won’t find out until
We run our program.

1.8. @By and @Param

Query methods match method parameters to entity fields or query parameters by name. Occasionally, this is inconvenient, resulting in less
natural method parameter names. Let’s reconsider an example we already saw above:

@Find
List<Book> books(String[] ibsn);

Here, because the parameter name must match the field isbn of Book, we couldn’t call it isbns, plural.
The @By annotation lets us work around this problem:

@Find
List<Book> books(@By("isbn") String[] ibsns);

Naturally, the name and type of the parameter are still checked at compile time; there’s no loss of typesafety here, despite the string.

The @Param annotation is significantly less useful, since we can always rename our HQL query parameter to match the method parameter,
or, at worst, use an ordinal parameter instead.

Chapter 2. Configuration and integration

Getting started with Hibernate Data Repositories involves the following steps:

set up a project with Hibernate ORM and HibernateProcessor,

configure a persistence unit,

1
2.
3. make sure a StatelessSession for that persistence unit is available for injection, and then
4,

inject a repository using CDI or some other implementation of jakarta.inject.

2.1. Project setup

We definitely need the following dependencies in our project:

Dependency
jakarta.data: jakarta.data-api
org.hibernate.orm:hibernate-core

org.hibernate.orm:hibernate-processor

And we’ll need to pick a JDBC driver:

Database

PostgreSQL or CockroachDB
MySQL or TiDB

MariaDB

DB2

SQL Server

Oracle

H2

HSQLDB

Table 2.1: Required dependencies

Explanation

The Jakarta Data API

Hibernate ORM

The annotation processor itself

Table 2.2: JDBC driver dependencies

Driver dependency

org.

com.

org.

com.

com.

com.

com.

org.

In addition, we might add some of the following to the mix.

Optional dependency

org.hibernate.validator:hibernate-validator

and org.glassfish.expressly:expressly

org.apache.logging.log4j:log4j-core

org.jboss.weld:weld-core-impl

postgresql:postgresqgl

mysql:mysqgl-connector-j

mariadb. jdbc:mariadb-java-client

ibm.db2: jcc

microsoft.sqglserver:mssqgl-jdbc

oracle.database. jdbc:ojdbc17

h2database:h2

hsqldb:hsgldb

Table 2.3: Optional dependencies

Explanation

Hibernate Validator

log4j

Weld CDI

You’ll need to configure the annotation processor to run when your project is compiled:

¢ In Gradle, you’ll need to use annotationProcessor.

annotationProcessor 'org.hibernate.orm:hibernate-processor:7.3.0.CR1"

¢ In Maven, you will need to configure the maven-compiler-plugin.

10

<build>
<plugins>
[...]
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>...</version>
<configuration>
<annotationProcessorPaths>
<path>
<groupId>org.hibernate.orm</groupId>
<artifactId>hibernate-processor</artifactId>
<version>7.3.0.CR1</version>
</path>
</annotationProcessorPaths>
<!-- This setting is required for the hibernate-processor dependencies to
also be managed by <dependencyManagement> rules, if any.
More information is available in Maven compiler plugin documentation:
https://maven.apache.org/plugins/maven-compiler-plugin/compile-
mojo.html#annotationProcessorPathsUseDepMgmt -->
<annotationProcessorPathsUseDepMgmt>true</annotationProcessorPathsUseDepMgmt>
</configuration>
</plugin>
[...]
</plugins>
</build>

2.2. Excluding classes from processing

There are three ways to limit the annotation processor to certain classes:

1. A given repository may be excluded from processing simply by specifying @Repository(provider="acme") where "acme" is any string
other than the empty string or a string equal, ignoring case, to "Hibernate". This is the preferred solution when there are multiple
Jakarta Data Providers available.

2. A package or type may be excluded by annotating it with the @Exclude annotation from org.hibernate.annotations.processing.

3. The annotation processor may be limited to consider only certain types or certain packages using the include configuration option, for
example, -Ainclude=x.entity.*,*Repository. Alternatively, types or packages may be excluded using the exclude option, for example,
-Aexclude=*Impl

2.3. Configuring Hibernate ORM

How you configure Hibernate depends on the environment you’re running in, and on your preference:

« in Java SE, we often just use hibernate.properties, but some people prefer to use persistence.xml, especially in case of multiple
persistence units,

* in Quarkus, we must use application.properties, and

* in a Jakarta EE container, we usually use persistence.xml.

Here’s a simple hibernate.properties file for h2 database, just to get you started.

Database connection settings

jakarta.persistence. jdbc.url=jdbc:h2:~/h2temp;DB_CLOSE_DELAY=-1
jakarta.persistence. jdbc.user=sa

jakarta.persistence. jdbc.pass=

Echo all executed SQL to console
hibernate.show_sql=true
hibernate.format_sql=true

hibernate.highlight_sqgl=true

Automatically export the schema
hibernate.hbm2ddl.auto=create

Please see the Introduction to Hibernate 6 for more information about configuring Hibernate.

11

https://docs.hibernate.org/orm/7.3/javadocs/org/hibernate/annotations/processing/Exclude.html
https://docs.hibernate.org/orm/7.3/introduction/html_single/#configuration

2.4, Obtaining a StatelessSession

Each repository implementation must somehow obtain a StatelessSession for its persistence unit. This usually happens via dependency
injection, so you’ll need to make sure that a StatelessSession is available for injection:

« in Quarkus, this problem is already taken care of for us—there’s always an injectable StatelessSession bean for each persistence unit,

and

« in a Jakarta EE environment, HibernateProcessor generates special code which takes care of creating and destroying the
StatelessSession, but

« in other environments, this is something we need to take care of ourselves.

Note that a StatelessSession should never be shared across transactions.
Depending on the libraries in your build path, HibernateProcessor generates different code. For example, if Quarkus is on
the build path, the repository implementation is generated to obtain the StatelessSession directly from CDI in a way

é which works in Quarkus but not in WildFly. Similarly, if Spring is in the build path, the repository implementation is

generated to use ObjectProvider<StatelessSession>, since Spring is not capable of transparently proxying contextual
objects like CDI does.

If you have multiple persistence units, you’ll need to disambiguate the persistence unit for a repository interface using
@Repository(dataStore="my-persistence-unit-name").

2.5. Injecting a repository
In principle, any implementation of jakarta.inject may be used to inject a repository implementation.

@Inject Library library;

Of course, this code will fail if the repository implementation is not able to obtain a StatelessSession from the bean container.

Unfortunately, jakarta.inject on its own is rather incomplete, and does not specify how injectable beans should be
discovered. Therefore, HibernateProcessor adds an appropriate bean-defining annotation to the repository

o implementation class, either:

* @ependent if CDI is available, or
* @Component if Spring is available.

It’s always possible to instantiate a repository implementation directly.

Library library = new Library_(statelessSession);

This is useful for testing, or for executing in an environment with no support for jakarta.inject.

2.6. Integration with Jakarta EE

Jakarta Data specifies that methods of a repository interface may be annotated with:

« Jakarta Bean Validation constraint annotations, and
« Jakarta Interceptors interceptor binding types, including,
* in particular, the @Transactional interceptor binding defined by Jakarta Transactions.

Note that these annotations are usually applied to a CDI bean implementation class, not to an interface,™ but a special exception is made

for repository interfaces.

Therefore, when running in a Jakarta EE environment, or in Quarkus, and when an instance of a repository interface is obtained via CDI, the

semantics of such annotations is respected.

@Transactional @Repository
public interface Library {

@Find
Book book(@NotNull String isbn);

@Find

12

https://docs.hibernate.org/orm/7.3/javadocs/org/hibernate/StatelessSession.html

Book book(@NotBlank String title, @NotNull LocalDate publicationDate);

As an aside, it’s rather satisfying to see all these things working so nicely together, since we members of the Hibernate team played pivotal
roles in the creation of the Persistence, Bean Validation, CDI, Interceptors, and Data specifications.

[1] @Inherited annotations are inherited from superclass to subclass, but not from interface to implementing class.

13

Chapter 3. Pagination and dynamic sorting

An automatic or annotated query method may have additional parameters which specify:

« additional sorting criteria, and/or
+ a limit and offset restricting the results which are actually returned to the client.

Before we see this, let’s see how we can refer to a field of an entity in a completely typesafe way.

3.1. The static metamodel

You might already be familiar with the Jakarta Persistence static metamodel. For an entity class Book, the class Book_ exposes objects
representing the persistent fields of Book, for example, Book_. title represents the field title. This class is generated by
HibernateProcessor at compilation time.

Jakarta Data has its own static metamodel, which is different to the Jakarta Persistence metamodel, but conceptually very similar. Instead
of Book_, the Jakarta Data static metamodel for Book is exposed by the class _Book.

The Jakarta Persistence static metamodel is most commonly used together with the Criteria Query API or the
EntityGraph facility. Even though these APIs aren’t part of the programming model of Jakarta Data, you can still use them
from a default method of a repository by calling the StatelessSession directly.

Let’s see how the static metamodel is useful, by considering a simple example.

It’s perfectly possible to obtain an instance of Sort by passing the name of a field:

var sort = Sort.asc("title");
Unfortunately, since this is in regular code, and not in an annotation, the field name "title" cannot be validated at compile time.
A much better solution is to use the static metamodel to obtain an instance of Sort.

var sort = _Book.title.asc();

The static metamodel also declares constants containing the names of persistent fields. For example, _Book. TITLE evaluates to the string
"title".

These constants are sometimes used as annotation values.

@Find

@orderBy(_Book.TITLE)

@0orderBy (_Book.ISBN)

List<Book> books(@Pattern String title, Year yearPublished);

This example looks superficially more typesafe. But since Hibernate Data Repositories already validates the content of
the @orderBy annotation at compile time, it’s not really better.

3.2. Dynamic sorting

Dynamic sorting criteria are expressed using the types Sort and Order:

« aninstance of Sort represents a single criterion for sorting query results, and
+ an instance of Order packages multiple Sorting criteria together.

A query method may accept an instance of Sort.

@Find
List<Book> books(@Pattern String title, Year yearPublished,
Sort<Book> sort);

This method might be called as follows:

var books =
library.books(pattern, year,
_Book.title.ascIgnoreCase());

14

https://jakarta.ee/specifications/data/1.0/apidocs/jakarta.data/jakarta/data/sort
https://jakarta.ee/specifications/data/1.0/apidocs/jakarta.data/jakarta/data/order

Alternatively the method may accept an instance of Order.

@Find
List<Book> books(@Pattern String title, Year yearPublished,
Order<Book> order);

The method might now be called like this:

var books =
library.books(pattern, year,
Order.of (_Book.title.ascIgnoreCase(),
_Book.isbn.asc()));

Dynamic sorting criteria may be combined with static criteria.
If the entity has entity supertypes, use a lower bounded wildcard in the repository method declaration, for example:

@Find
List<Book> books(@Pattern String title, Year yearPublished,
Order<? super Book> order);

This lets the caller sort by fields of the supertype.

@Find

@orderBy("title")

List<Book> books(@Pattern String title, Year yearPublished,
Sort<Book> sort);

We’re not convinced this is very useful in practice.

3.3. Limits

ALimit is the simplest way to express a subrange of query results. It specifies:

* maxResults, the maximum number of results to be returned from the database server to the client, and,
« optionally, startAt, the position of the first result to be returned to the client.

These values map directly to the familiar setMaxResults() and setFirstResult() of the Jakarta Persistence Query interface.

@Find

@0orderBy(_Book.TITLE)

List<Book> books(@Pattern String title, Year yearPublished,
Limit limit);

var books =
library.books(pattern, year,
Limit.of (MAX_RESULTS));

Whereas Query.setFirstResult() is an offset of the first result to be returned, with setFirstResult(@) meaning "no
é offset", Limit.startAt numbers results from one, with Limit.range(1, n) meaning "at most n results, starting from the
first result".

A more sophisticated approach is provided by PageRequest.

3.4. Offset-based pagination

A PageRequest is superficially similar to a Limit, except that it’s specified in terms of:

* apagesize,and
* anumbered page.

We can use a PageRequest just like aLimit.

15

https://jakarta.ee/specifications/data/1.0/apidocs/jakarta.data/jakarta/data/limit
https://jakarta.ee/specifications/data/1.0/apidocs/jakarta.data/jakarta/data/page/pagerequest

@Find

@orderBy("title")

@orderBy("isbn")

List<Book> books(@Pattern String title, Year yearPublished,
PageRequest pageRequest);

var books =
library.books(pattern, year,
PageRequest.ofSize(PAGE_SIZE));

Query results should be totally ordered when a repository method is used for pagination. The easiest way to be sure that
é you have a well-defined total order is to specify the identifier of the entity as the last element of the order. For this reason,
we specified @orderBy("isbn") in the previous example.

However, a repository method which accepts a PageRequest may return a Page of results instead of a List, making it easier to implement
pagination.

@Find

@orderBy("title")

@orderBy("isbn")

Page<Book> books(@Pattern String title, Year yearPublished,
PageRequest pageRequest);

var page =
library.books(pattern, year,
PageRequest.ofSize(PAGE_SIZE));
var books = page.content();
long totalPages = page.totalPages();
/] ...
while (page.hasNext()) {
page = library.books(pattern, year,
page.nextPageRequest().withoutTotal());
books = page.content();
/] ...

Pagination may be combined with dynamic sorting.
@Find

Page<Book> books(@Pattern String title, Year yearPublished,
PageRequest pageRequest, Order<Book> order);

It’s important to pass the same arguments to query parameters, and the same sorting criteria, with each page request!
The repository is stateless: it doesn’t remember the values passed on the previous page request.

A repository method with return type Page uses SQL offset and limit to implement pagination. We’ll refer to this as offset-based pagination.
A problem with this approach is that it’s quite vulnerable to missed or duplicate results when the database is modified between page
requests. Therefore, Jakarta Data offers an alternative solution, which we’ll call key-based pagination.

3.5. Key-based pagination

In key-based pagination, the query results must be totally ordered by a unique key of the result set. The SQL offset is replaced with a
restriction on the unique key, appended to the where clause of the query:

+ arequest for the next page of query results uses the key value of the [ast result on the current page to restrict the results, or
« arequest for the previous page of query results uses the key value of the first result on the current page to restrict the results.

A For key-based pagination, it’s essential that the query has a total order.

From our point of view as users of Jakarta Data, key-based pagination works almost exactly like offset-based pagination. The difference is
that we must declare our repository method to return CursoredPage.

@Find

16

https://jakarta.ee/specifications/data/1.0/apidocs/jakarta.data/jakarta/data/page/page
https://jakarta.ee/specifications/data/1.0/apidocs/jakarta.data/jakarta/data/page/cursoredpage

@orderBy("title")

@orderBy("isbn")

CursoredPage<Book> books(@Pattern String title, Year yearPublished,
PageRequest pageRequest);

On the other hand, with key-based pagination, Hibernate must do some work under the covers rewriting our query.

lose synchronization with the query result set during navigation. This isn’t usually a problem, but it’s something to be

: Key-based pagination goes some way to protect us from skipped or duplicate results. The cost is that page numbers can
aware of.

Direct API support for key-based pagination originated in the work of Hibernate team member Christian Beikov back in 2015 in the
Blaze-Persistence framework. It was adopted from there by the Jakarta Data specification, and is now even available in Hibernate
ORM via the KeyedPage/KeyedResultList API.

3.6. Dynamic restrictions

Jakarta Data 1.0 does not include an API for programmatically specifying restrictions, but for now we may use the native Restriction APl in
Hibernate 7.

o Restrictions will be standardized by Jakarta Data 1.1.

Hibernate, an atomic Restriction is formed from:

« areference to a JPA SingularAttribute, usually obtained via the Jakarta Persistence (not Jakarta Data) static metamodel, together with
» aRange of allowed values for that attribute.

A query method may have a parameter of type Restriction, for example:

@Find
List<Book> books(Restriction<Book> restriction,
Order<Book> order);

This method would be called like this:

var books =
library.books(Restriction.contains(Book_.title, "Hibernate"),
Order.of (_Book.title.ascIgnoreCase(),
_Book.isbn.asc()));

Notice the mix of metamodels here: Book_ is the Persistence metamodel, and _Book is the Data metamodel.

It’s even possible to directly use a Range to restrict a given property or field of an entity:
@Find

List<Book> books(Range<String> title, Range<Year> yearPublished,
Order<Book> order);

There are various kinds of Range, including lists, patterns, and intervals:
var books =
library.books(Range.prefix("Hibernate"),
Range.closed(Year.of(2000), Year.of(2009)),

Order.of (_Book.title.ascIgnoreCase(),
_Book.isbn.asc()));

3.7. Advanced control over querying

For more advanced usage, an automatic or annotated query method may be declared to return jakarta.persistence.Query,
jakarta.persistence.TypedQuery, org.hibernate.query.Query, ororg.hibernate.query.SelectionQuery.

@Find

17

https://docs.hibernate.org/orm/7.3/javadocs/org/hibernate/query/KeyedPage.html
https://docs.hibernate.org/orm/7.3/javadocs/org/hibernate/query/KeyedResultList.html
https://docs.hibernate.org/orm/7.3/javadocs/org/hibernate/query/restriction/Restriction.html
https://docs.hibernate.org/orm/7.3/javadocs/org/hibernate/query/range/Range.html
https://docs.hibernate.org/orm/7.3/javadocs/org/hibernate/query/Query.html
https://docs.hibernate.org/orm/7.3/javadocs/org/hibernate/query/SelectionQuery.html

SelectionQuery<Book> booksQuery(@Pattern String title, Year yearPublished);

default List<Book> booksQuery(String title, Year yearPublished) {
return books(title, yearPublished)
.enableFetchProfile(_Book.PROFILE_WITH_AUTHORS)
.setReadOnly(true)
.setTimeout (QUERY_TIMEOUT)
.getResultList();

This allows for direct control over query execution, without loss of type safety.

18

Chapter 4. Reactive repositories

Hibernate Data Repositories provides repositories backed by Hibernate Reactive for use in reactive programming. The methods of a
reactive repository are non-blocking, and so every operation returns a reactive stream.

accommodate such extensions. This capability is being written into Data 1.1 under the more general category of

0 Jakarta Data 1.0 does not define a way to write repositories for use in reactive programming, but the spec was written to
asynchronous repositories.

In Hibernate Data Repositories we use Mutiny to work with reactive streams.

A future version of Hibernate Data Repositories will also allow the use of CompletionStage from java.util.concurrent.
Asynchronous repositories based on Mutiny are unlikely to ever be portable to other implementations of Jakarta Data.

In our opinion, Mutiny is a much more comfortable API than CompletionStage.

The documentation for Hibernate Reactive contains a comparison table that’s useful if you’re more familiar with
CompletionStage

4.1. Defining a reactive repository

In the following code example we notice the two requirements for a reactive repository in Hibernate Data Repositories:

1. there must be a resource accessor method returning the underlying Mutiny . StatelessSession from Hibernate Reactive, and
2. the return type of every other operation is Uni, a reactive stream type defined by Mutiny.

For example, a @Find method which would return Book in a regular Jakarta Data repository must return Uni<Book> in a reactive repository.
Similarly, lifecycle methods usually return Uni<void> instead of void.

@Repository
interface Library {

Mutiny.StatelessSession session();

@Find
Uni<Book> book(String isbn);

@Insert
Uni<Void> add(Book book);

@Find
Uni<List<Book>> books(@By("isbn") String[] ibsns);

It’s not possible to mix blocking and non-blocking operations in the same repository interface.

Depending on how you’re managing the stateless session, you might need to declare the resource accessor method with
the type Uni<Mutiny.StatelessSession>

4.2, Obtaining a reactive repository

To make use of our reactive repository, we’ll need to bootstrap Hibernate Reactive and obtain aMutiny.SessionFactory. For example, if we
have a persistence unit named example in our persistence. xml file, we can obtain a SessionFactory like this:

Mutiny.SessionFactory factory =
createEntityManagerFactory("example")
.unwrap(Mutiny.SessionFactory.class);

Please refer to the documentation for Hibernate Reactive for more information on this topic.

In Quarkus, this step is unnecessary, and you can let Quarkus manage and inject the reactive SessionFactory.

Once we have the SessionFactory, we can easily obtain aMutiny.StatelessSession, and use it to instantiate our repository:

19

https://hibernate.org/reactive/
https://smallrye.io/smallrye-mutiny/
https://hibernate.org/reactive/documentation/3.0/reference/html_single/#_apis_for_chaining_reactive_operations
https://hibernate.org/reactive/documentation/

factory.withStatelessTransaction(session -> {
Library library = new Library_(session);

)

An even better approach is to make a @RequestScoped instance of Mutiny.StatelessSession or
Uni<Mutiny.StatelessSession> available for injection by CDI. Then the Library repository itself may be directly injected,
and you won’t have to worry about managing the stateless session in application program code. This is a little bit tricky to

get working perfectly, so hopefully by the time you’re reading this, there will already be a built-in implementation in
Quarkus.

4.3. Calling a reactive repository

To actually make use of a reactive repository, you’ll need to be familiar with the programming model of reactive streams. For this, we refer
you to the Mutiny documentation, and to the documentation for Hibernate Reactive, which goes over some gotchas.

The most important thing to understand is that a code fragment like the following does not result in any immediate interaction with the
database:

Uni<Void> uni =
factory.withStatelessTransaction(session -> {
Library library = new Library_(session);
return library.book("9781932394153");

»
.invoke(book -> out.println(book.title))
.replaceWithVoid();

This code does no more than construct a reactive stream. We can execute the stream blockingly by calling uni.await().indefinitely(),

but that’s not something we would ever do in real code. Instead, what we usually do is simply return the stream, allowing it to be executed
in a non-blocking way.

20

	Introducing Hibernate Data Repositories
	Table of Contents
	Preface
	Chapter 1. Programming model
	1.1. Repository interfaces
	1.2. Organizing persistence operations
	1.3. Default methods
	1.4. Resource accessor methods
	1.5. Lifecycle methods
	1.6. Automatic query methods
	1.7. Annotated query methods
	1.8. @By and @Param

	Chapter 2. Configuration and integration
	2.1. Project setup
	2.2. Excluding classes from processing
	2.3. Configuring Hibernate ORM
	2.4. Obtaining a StatelessSession
	2.5. Injecting a repository
	2.6. Integration with Jakarta EE

	Chapter 3. Pagination and dynamic sorting
	3.1. The static metamodel
	3.2. Dynamic sorting
	3.3. Limits
	3.4. Offset-based pagination
	3.5. Key-based pagination
	3.6. Dynamic restrictions
	3.7. Advanced control over querying

	Chapter 4. Reactive repositories
	4.1. Defining a reactive repository
	4.2. Obtaining a reactive repository
	4.3. Calling a reactive repository

