
A Guide to Hibernate Query Language
Version 6.5.3.Final

Table of Contents

Preface . 1
1. Basic concepts . 2

1.1. HQL and SQL . 2
1.2. Lexical structure . 2

1.2.1. Identifiers and case sensitivity . 2
1.2.2. Comments . 3
1.2.3. Parameters . 3
1.2.4. Literals . 4

1.3. Syntax . 4
1.4. Type system . 4

1.4.1. Null values and ternary logic. 4
1.5. Statement types . 4

1.5.1. Update statements . 5
1.5.2. Delete statements . 6
1.5.3. Insert statements. 6
1.5.4. Select statements . 7

1.6. Representing result sets in Java . 10
1.6.1. Queries with a single projected item. 10
1.6.2. Queries with multiple projected items . 10
1.6.3. Instantiation . 11

2. Expressions. 13
2.1. Literals . 13

2.1.1. Boolean literals . 13
2.1.2. String literals . 13
2.1.3. Numeric literals . 13
2.1.4. Date and time literals . 14
2.1.5. Duration literals . 15
2.1.6. Binary string literals . 15
2.1.7. Enum literals. 15
2.1.8. Java constants . 15
2.1.9. Literal entity names . 15

2.2. Identification variables and path expressions. 16
2.3. Operator expressions . 16

2.3.1. String concatenation . 17
2.3.2. Numeric arithmetic . 17
2.3.3. Datetime arithmetic . 18

2.4. Case expressions . 18
2.5. Tuples . 19
2.6. Functions . 19

2.6.1. Types and typecasts . 20
2.6.2. Functions for working with null values. 21
2.6.3. Functions for working with dates and times . 21
2.6.4. Functions for working with strings . 22
2.6.5. Numeric functions . 25
2.6.6. Functions for dealing with collections . 25
2.6.7. Functions for working with ids and versions. 27
2.6.8. Embedding SQL expressions. 28

2.7. Predicates . 29
2.7.1. Comparison operators . 29
2.7.2. The between predicate . 29
2.7.3. Operators for dealing with null . 29
2.7.4. Operators for dealing with boolean values . 30
2.7.5. Collection predicates . 30
2.7.6. String pattern matching. 30
2.7.7. The in predicate . 30
2.7.8. Comparison operators and subqueries . 31
2.7.9. The exists predicate . 32
2.7.10. Logical operators. 32

3. Root entities and joins . 33
3.1. Declaring root entities. 33

3.1.1. Identification variables . 33
3.1.2. Root entity references . 33
3.1.3. Polymorphism . 34
3.1.4. Derived roots . 34
3.1.5. Common table expressions in from clause . 34

3.2. Declaring joined entities. 34
3.2.1. Explicit root joins . 35
3.2.2. Explicit association joins . 35
3.2.3. Explicit association joins with join conditions . 35
3.2.4. Association fetching . 36
3.2.5. Joins with typecasts . 36
3.2.6. Subqueries in joins . 36
3.2.7. Implicit association joins (path expressions) . 37
3.2.8. Joining collections and many-valued associations. 38
3.2.9. Implicit joins involving collections . 39

4. Selection, projection, and aggregation . 40
4.1. Restriction . 40
4.2. Aggregation . 40

4.2.1. Aggregation and grouping. 40
4.2.2. Totals and subtotals . 41
4.2.3. Aggregation and restriction . 41

4.3. Projection. 41
4.3.1. Duplicate removal . 41
4.3.2. Aggregate functions . 42
4.3.3. Aggregate functions and collections. 43
4.3.4. Aggregate functions with restriction. 43
4.3.5. Ordered set aggregate functions . 43
4.3.6. Window functions . 44

4.4. Operations on result sets . 46
4.5. Sorting . 47

4.5.1. Limits and offsets . 48
4.6. Common table expressions . 49

4.6.1. Materialization hints . 50
4.6.2. Recursive queries. 50
4.6.3. Cycle detection . 51
4.6.4. Ordering depth-first or breadth-first. 51

5. Credits . 53

Preface

Hibernate 6 is a major redesign of the world’s most popular and feature-rich ORM solution. The redesign has touched almost every
subsystem of Hibernate, including the APIs, mapping annotations, and, above all else, the query language.

This is the second time Hibernate Query Language has been completely reimplemented from scratch, but the first time in more than
fifteen years. In this new incarnation, HQL is far more powerful, and the HQL compiler much more robust.

At long last, HQL has a feature set to match that of modern dialects of SQL, and is able to take full advantage of the power of modern
SQL databases.

This document is a reference guide to the full feature set of the language, and is the only up-to-date source for those who wish to
learn how to write HQL effectively in Hibernate 6.

If you are unfamiliar with Hibernate, be sure to first read Introduction to Hibernate or check out the Quick Start.

1

https://docs.jboss.org/hibernate/orm/6.5/introduction/html_single/Hibernate_Introduction.html
https://docs.jboss.org/hibernate/orm/6.5/quickstart/html_single/

Chapter 1. Basic concepts

This document describes Hibernate Query Language (HQL), which is, I suppose we could say, a "dialect" of the Java (now Jakarta)
Persistence Query Language (JPQL).

 Or is it the other way around?

JPQL was inspired by early versions of HQL, and is a proper subset of modern HQL. Here we focus on describing
the complete, more powerful HQL language as it exists today.

If strict JPA compliance is what you’re looking for, use the setting hibernate.jpa.compliance.query=true. With
this configuration, any attempt to use HQL features beyond the JPQL subset will result in an exception.

We don’t recommend the use of this setting.

The truth is that HQL today has capabilities that go far beyond what is possible in plain JPQL. We’re not going to fuss too much
about not limiting ourselves to the standard here. Faced with a choice between writing database-specific native SQL, or database-
independent HQL, we know what our preference is.

1.1. HQL and SQL

Throughout this document, we’ll assume you know SQL and the relational model, at least at a basic level. HQL and JPQL are loosely
based on SQL and are easy to learn for anyone familiar with SQL.

For example, if you understand this SQL query:

select book.title, pub.name /* projection */
from Book as book /* root table */
 join Publisher as pub /* table join */
 on book.publisherId = pub.id /* join condition */
where book.title like 'Hibernate%' /* restriction (selection) */
order by book.title /* sorting */

Then we bet you can already make sense of this HQL:

select book.title, pub.name /* projection */
from Book as book /* root entity */
 join book.publisher as pub /* association join */
where book.title like 'Hibernate%' /* restriction (selection) */
order by book.title /* sorting */

You might notice that even for this very simple example, the HQL version is slightly shorter. This is typical. Actually, HQL queries are
usually much more compact than the SQL they compile to.

 But there’s one huge difference: in HQL, Book refers to an entity class written in Java, and book.title to a field of
that class. We’re not permitted to directly reference database tables and columns in HQL or JPQL.

In this chapter, we’ll demonstrate how similar HQL is to SQL by giving a quick overview of the basic statement types. You’ll be bored
to discover they’re exactly the ones you expect: select, insert, update, and delete.

 This is a reference guide. We’re not going to explain basic concepts like ternary logic, joins, aggregation, selection,
or projection, because that information is freely available elsewhere, and anyway we couldn’t possibly do these
topics justice here. If you don’t have a firm grasp of these ideas, it’s time to pick up a book about SQL or about the
relational model.

But first we need to mention something that’s a bit different to SQL. HQL has a slightly complicated way of dealing with case
sensitively.

1.2. Lexical structure

Lexically, JPQL is quite similar to SQL, so in this section we’ll limit ourselves to mentioning those places where it differs.

1.2.1. Identifiers and case sensitivity

An identifier is a name used to refer to an entity, an attribute of a Java class, an identification variable, or a function.

2

For example, Book, title, author, and upper are all identifiers, but they refer to different kinds of things. In HQL and JPQL, the case
sensitivity of an identifier depends on the kind of thing the identifier refers to.

The rules for case sensitivity are:

• keywords and function names are case-insensitive, but
• identification variable names, Java class names, and the names of attributes of Java classes, are case-sensitive.

We apologize for this inconsistency. In hindsight, it might have been better to define the whole language as case-sensitive.

 Incidentally, it’s standard practice to use lowercase keywords in HQL.

The use of uppercase keywords indicates an endearing but unhealthy attachment to the culture of the 1970’s.

Just to reiterate these rules:

select, SeLeCT, sELEct, and SELECT All the same, select is a keyword

upper(name) and UPPER(name) Same, upper is a function name

from BackPack and from Backpack Different, refer to different Java classes

person.nickName and person.nickname Different, since the path expression element nickName refers to an
attribute of an entity defined in Java

person.nickName, Person.nickName, and PERSON.nickName All different, since the first element of a path expression is an
identification variable

 The JPQL specification defines identification variables as case-insensitive. And so in strict JPA-compliant mode,
Hibernate treats person.nickName, Person.nickName, and PERSON.nickName as the same.

A quoted identifier is written in backticks. Quoting lets you use a keyword as an identifier.

select thing.interval.`from` from Thing thing

Actually, in most contexts, HQL keywords are "soft", and don’t need to be quoted. The parser is usually able to distinguish if the
reserved word is being used as a keyword or as an identifier.

1.2.2. Comments

Comments in HQL look like multiline comments in Java. They’re delimited by /* and */.

Neither SQL-style -- nor Java-style // line-ending comments are allowed.

It’s quite rare to see comments in HQL, but perhaps it will be more common now that Java has text blocks.

1.2.3. Parameters

Parameters come in two flavors in JPQL, and HQL supports a third flavor for historical reasons:

Parameter type Examples Usage from Java

Named parameters :name, :title, :id query.setParameter("name", name)

Ordinal parameters ?1, ?2, ?3 query.setParameter(1, name)

JDBC-style parameters Ὀ� ? query.setParameter(1, name)

JDBC-style parameters of form ? are like ordinal parameters where the index is inferred from the position in the text of the query.
JDBC-style parameters are deprecated.

 It’s extremely important to use parameters to pass user input to the database. Constructing a query by
concatenating HQL fragments with user input is extremely dangerous, opening the door to the possibility of
executing arbitrary code on the database server.

3

1.2.4. Literals

Some of the syntax for literal values also departs from the standard syntax in ANSI SQL, especially in the area of date/time literals,
but we’ll discuss all that later, in Literals.

1.3. Syntax

We’ll describe the syntax of the language as we go along, sometimes displaying fragments of the grammar in an ANTLR-like BNF
form. (Occasionally we’ll simplify these snippets for readability, so please don’t take them as canonical.)

The full canonical grammar for HQL can be found in the github project.

The grammar for JPQL may be found in chapter 4 of the JPA specification.

1.4. Type system

JPA doesn’t have a well-specified type system, but, reading between the lines a bit, the following types may be discerned:

• entity types,
• numeric values,
• strings,
• dates/times,
• booleans, and
• enumerated types.

Such a coarse-grained type system is in some sense an insufficient constraint on implementors of the specification, or, viewed from
a different perspective, it leaves us quite a lot of flexibility.

The way HQL interprets this type system is to assign a Java type to every expression in the language. Thus, numeric expressions
have types like Long, Float, or BigInteger, date/time expressions have types like LocalDate, LocalDateTime, or Instant, and boolean
expressions are always of type Boolean.

Going further, an expression like local datetime - document.created is assigned the Java type java.time.Duration, a type which
doesn’t appear anywhere in the JPA specification.

Since the language must be executed on SQL databases, every type accommodates null values.

1.4.1. Null values and ternary logic

The SQL null behaves quite differently to a null value in Java.

• In Java, an expression like number + 1 produces in an exception if number is null.
• But in SQL, and therefore also in HQL and JPQL, such an expression evaluates to null.

 It’s almost always the case that an operation applied to a null value yields another null value. This rule applies to
function application, to operators like * and ||, to comparison operators like < and =, and even to logical
operations like and and not.

The exceptions to this rule are the is null operator and the functions coalesce() and ifnull() which are
specifically designed for dealing with null values.

This rule is the source of the famous (and controversial) ternary logic of SQL. A logical expression like firstName='Gavin' and
team='Hibernate' isn’t restricted to the values true and false. It may also be null.

This can, in principle, lead to some quite unintuitive results: we can’t use the law of the excluded middle to reason about logical
expressions in SQL! But in practice, we’ve never once run into a case where this caused us problems.

As you probably know, when a logical predicate occurs as a restriction, rows for which the predicate evaluates to null are excluded
from the result set. That is, in this context at least, a logical null is interpreted as "effectively false".

1.5. Statement types

HQL features four different kinds of statement:

• select queries,
• update statements,
• delete statements, and

4

https://github.com/hibernate/hibernate-orm/blob/main/hibernate-core/src/main/antlr/org/hibernate/grammars/hql/HqlParser.g4

• insert … values and insert … select statements.

Collectively, insert, update, and delete statements are sometimes called mutation queries. We need to be a little bit careful when
executing mutation queries via a stateful session.

 The effect of an update or delete statement is not reflected in the persistence context, nor in the state of entity
objects held in memory at the time the statement is executed.

It’s the responsibility of the client program to maintain synchronization of state held in memory with the database
after execution of an update or delete statement.

Let’s consider each type of mutation query in turn, beginning with the most useful type.

1.5.1. Update statements

The BNF for an update statement is quite straightforward:

updateStatement
 : "UPDATE" "VERSIONED"? targetEntity setClause whereClause?

targetEntity
 : entityName variable?

setClause
 : "SET" assignment ("," assignment)*

assignment
 : simplePath "=" expression

The set clause has a list of assignments to attributes of the given entity.

For example:

update Person set nickName = 'Nacho' where name = 'Ignacio'

Update statements are polymorphic, and affect mapped subclasses of the given entity class. Therefore, a single HQL update
statement might result in multiple SQL update statements executed against the database.

An update statement must be executed using Query.executeUpdate().

// JPA API
int updatedEntities = entityManager.createQuery(
 "update Person p set p.name = :newName where p.name = :oldName")
 .setParameter("oldName", oldName)
 .setParameter("newName", newName)
 .executeUpdate();

// Hibernate native API
int updatedEntities = session.createMutationQuery(
 "update Person set name = :newName where name = :oldName")
 .setParameter("oldName", oldName)
 .setParameter("newName", newName)
 .executeUpdate();

The integer value returned by executeUpdate() indicates the number of entity instances affected by the operation.

 In a JOINED inheritance hierarchy, multiple rows are required to store a single entity instance. In this case, the
update count returned by Hibernate might not be exactly the same as the number of rows affected in the
database.

An update statement, by default, does not affect the column mapped by the @Version attribute of the affected entities.

Adding the keyword versioned—writing update versioned—specifies that Hibernate should increment the version number or
update the last modification timestamp.

update versioned Book set title = :newTitle where ssn = :ssn

5

https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form

An update statement may not directly join other entities, but it may:

• have an implicit join, or
• have subqueries in its set clause, or in its where clause, and the subqueries may contain joins.

1.5.2. Delete statements

The BNF for a delete statement is even simpler:

deleteStatement
 : "DELETE" "FROM"? targetEntity whereClause?

For example:

delete Author author where is empty author.books

As in SQL, the presence or absence of the from keyword has absolutely no effect on the semantics of the delete statement.

Just like update statements, delete statements are polymorphic, and affect mapped subclasses of the given entity class. Therefore,
a single HQL delete statement might result in multiple SQL delete statements executed against the database.

A delete statement is executed by calling Query.executeUpdate().

The integer value returned by executeUpdate() indicates the number of entity instances affected by the operation.

A delete statement may not directly join other entities, but it may:

• have an implicit join, or
• have subqueries in its where clause, and the subqueries may contain joins.

1.5.3. Insert statements

There are two kinds of insert statement:

• insert … values, where the attribute values to insert are given directly as tuples, and
• insert … select, where the inserted attribute values are sourced from a subquery.

The first form inserts a single row in the database, or multiple rows if you provide multiple tuples in the values clause. The second
form may insert many new rows, or none at all.

 The first sort of insert statement is not as useful. It’s usually better to just use persist().

But you might consider using it to set up test data.

 insert statements are not part of JPQL.

The BNF for an insert statement is:

insertStatement
 : "INSERT" "INTO"? targetEntity targetFields
 (queryExpression | valuesList)
 conflictClause?

targetEntity
 : entityName variable?

targetFields
 : "(" simplePath ("," simplePath)* ")"

valuesList
 : "VALUES" values ("," values)*

values
 : "(" expression ("," expression)* ")"

For example:

6

insert Person (id, name)
 values (100L, 'Jane Doe'), (200L, 'John Roe')

insert into Author (id, name, bio)
 select id, name, name || ' is a newcomer for ' || str(year(local date))
 from Person
 where id = :pid

As in SQL, the presence or absence of the into keyword has no effect on the semantics of the insert statement.

From these examples we might notice that insert statements are in one respect a bit different to update and delete statements.

 An insert statement is inherently not polymorphic! Its list of target fields is of fixed length, whereas each subclass
of an entity class might declare additional fields. If the entity is involved in a mapped inheritance hierarchy, only
attributes declared directly by the named entity and its superclasses may occur in the list of target fields.
Attributes declared by subclasses may not occur.

The queryExpression in an insert … select statement may be any valid select query, with the caveat that the types of the values
in the select list must match the types of the target fields.

 This is checked during query compilation rather than allowing the type check to delegate to the database. This
may cause problems when two Java types map to the same database type. For example, an attribute of type
LocalDateTime and an attribute or type Timestamp both map to the SQL type timestamp, but are not considered
assignable by the query compiler.

There are two ways to assign a value to the @Id attribute:

• explicitly specify the id attribute in the list of target fields, and its value in the values assigned to the target fields, or
• omit it, in which case a generated value is used.

Of course, the second option is only available for entities with database-level id generation (sequences or identity/autoincrement
columns). It’s not available for entities whose id generator is implemented in Java, nor for entities whose id is assigned by the
application.

The same two options are available for a @Version attribute. When no version is explicitly specified, the version for a new entity
instance is used.

The on conflict clause lets us specify what action should be taken when the database already contains the record we’re
attempting to insert.

conflictClause
 : ON CONFLICT conflictTarget? "DO" conflictAction

conflictTarget
 : ON CONSTRAINT identifier
 | "(" simplePath ("," simplePath)* ")"

conflictAction
 : "NOTHING"
 | "UPDATE" setClause whereClause?

Note that the on constraint variant accepting the name of a unique constraint only works on certain databases, or when just a
single row is being inserted.

insert Person (ssn, name, phone)
 values ('116-76-1234', 'Jane Doe', '404 888 4319')
 on conflict (ssn) do update
 set phone = excluded.phone

Like update and delete statements, an insert statement must be executed by calling Query.executeUpdate().

Now it’s time to look at something much more complicated.

1.5.4. Select statements

Select statements retrieve and analyse data. This is what we’re really here for.

7

The full BNF for a select query is quite complicated, but there’s no need to understand it now. We’re displaying it here for future
reference.

selectStatement
 : queryExpression

queryExpression
 : withClause? orderedQuery (setOperator orderedQuery)*

orderedQuery
 : (query | "(" queryExpression ")") queryOrder?

query
 : selectClause fromClause? whereClause? (groupByClause havingClause?)?
 | fromClause whereClause? (groupByClause havingClause?)? selectClause?
 | whereClause

queryOrder
 : orderByClause limitClause? offsetClause? fetchClause?

fromClause
 : "FROM" entityWithJoins ("," entityWithJoins)*

entityWithJoins
 : fromRoot (join | crossJoin | jpaCollectionJoin)*

fromRoot
 : entityName variable?
 | "LATERAL"? "(" subquery ")" variable?

join
 : joinType "JOIN" "FETCH"? joinTarget joinRestriction?

joinTarget
 : path variable?
 | "LATERAL"? "(" subquery ")" variable?

withClause
 : "WITH" cte ("," cte)*
 ;

Most of the complexity here arises from the interplay of set operators (union, intersect, and except) with sorting.

We’ll describe the various clauses of a query later, in Root entities and joins and in Selection, projection, and aggregation, but for
now, to summarize, a query might have these bits:

Clause Jargon Purpose

with Common table expressions Declares named subqueries to be used in the following query

from and join Roots and joins Specifies the entities involved in the query, and how they’re related to each
other

where Selection/restriction Specifies a restriction on the data returned by the query

group by Aggregation/grouping Controls aggregation

having Selection/restriction Specifies a restriction to apply after aggregation

select Projection Specifies a projection (the things to return from the query)

union, intersect, except Set algebra These are set operators applied to the results of multiple subqueries

order by Ordering Specifies how the results should be sorted

limit, offset, fetch Limits Allows for limiting or paginating the results

Every one of these clauses is optional!

For example, the simplest query in HQL has no select clause at all:

8

from Book

But we don’t necessarily recommend leaving off the select list.

 HQL doesn’t require a select clause, but JPQL does.

Naturally, the previous query may be written with a select clause:

select book from Book book

But when there’s no explicit select clause, the select list is implied by the result type of the query:

// result type Book, only the Book selected
List<Book> books =
 session.createQuery("from Book join authors", Book.class)
 .getResultList();
for (Book book: books) {
 ...
}

// result type Object[], both Book and Author selected
List<Object[]> booksWithAuthors =
 session.createQuery("from Book join authors", Book.class, Object[].class)
 .getResultList();
for (var bookWithAuthor: booksWithAuthors) {
 Book book = (Book) bookWithAuthor[0];
 Author author = (Author) bookWithAuthor[1];
 ...
}

For complicated queries, it’s probably best to explicitly specify a select list.

An alternative "simplest" query has only a select list:

select local datetime

This results in a SQL from dual query (or equivalent).

 Looking carefully at the BNF given above, you might notice that the select list may occur either at the beginning
of a query, or near the end, right before order by.

Of course, standard SQL, and JPQL, require that the select list comes at the beginning. But it’s more natural to
put it last:

from Book book select book.title, book.isbn

This form of the query is more readable, because the alias is declared before it’s used, just as God and nature
intended.

Naturally, queries are always polymorphic. Indeed, a fairly innocent-looking HQL query can easily translate to a SQL statement with
many joins and unions.

 We need to be a bit careful about that, but actually it’s usually a good thing. HQL makes it very easy to fetch all the
data we need in a single trip to the database, and that’s absolutely key to achieving high performance in data
access code. Typically, it’s much worse to fetch exactly the data we need, but in many round trips to the database
server, than it is to fetch just a bit more data than what we’re going to need, all a single SQL query.

When there’s no explicit select clause, a further abbreviation is sometimes possible.

 When the result type of a select query is an entity type, and we specify the type explicitly by passing the entity
class to createQuery() or createSelectionQuery(), we’re sometimes allowed to omit the from clause, for
example:

9

// explicit result type Book, so 'from Book' is inferred
List<Book> books =
 session.createQuery("where title like :title", Book.class)
 .setParameter("title", title)
 .getResultList();

1.6. Representing result sets in Java

One of the most uncomfortable aspects of working with data in Java is that there’s no good way to represent a table. Languages
designed for working with data—R is an excellent example—always feature some sort of built-in table or "data frame" type. Of
course, Java’s type system gets in the way here. This problem is much easier to solve in a dynamically-typed language. The
fundamental problem for Java is that it doesn’t have tuple types.

Queries in Hibernate return tables. Sure, often a column holds whole entity objects, but we’re not restricted to returning a single
entity, and we often write queries that return multiple entities in each result, or which return things which aren’t entities.

So we’re faced with the problem if representing such result sets, and, we’re sad to say, there’s no fully general and completely
satisfying solution.

Let’s begin with the easy case.

1.6.1. Queries with a single projected item

If there’s just one projected item in the select list, then, no sweat, that’s the type of each query result.

List<String> results =
 entityManager.createQuery("select title from Book", String.class)
 .getResultList();

There’s really no need to fuss about with trying to represent a "tuple of length 1". We’re not even sure what to call those.

Problems arise as soon as we have multiple items in the select list of a query.

1.6.2. Queries with multiple projected items

When there are multiple expressions in the select list then, by default, and in compliance with JPA, each query result is packaged as
an array of type Object[].

List<Object[]> results =
 entityManager.createQuery("select title, left(book.text, 200) from Book",
 Object[].class)
 .getResultList();
for (var result : results) {
 String title = (String) result[0];
 String preamble = (String) result[1];
}

This is bearable, but let’s explore some other options.

JPA lets us specify that we want each query result packaged as an instance of jakarta.persistence.Tuple. All we have to do is pass
the class Tuple to createQuery().

List<Tuple> tuples =
 entityManager.createQuery("select title as title, left(book.text, 200) as preamble from Book",
 Tuple.class)
 .getResultList();
for (Tuple tuple : tuples) {
 String title = tuple.get("title", String.class);
 String preamble = tuple.get("preamble", String.class);
}

The names of the Tuple elements are determined by the aliases given to the projected items in the select list. If no aliases are
specified, the elements may be accessed by their position in the list, where the first item is assigned the position zero.

As an extension to JPA, and in a similar vein, Hibernate lets us pass Map or List, and have each result packaged as a map or list:

10

var results =
 entityManager.createQuery("select title as title, left(book.text, 200) as preamble from Book",
 Map.class)
 .getResultList();
for (var map : results) {
 String title = (String) map.get("title");
 String preamble = (String) map.get("preamble");
}

var results =
 entityManager.createQuery("select title, left(book.text, 200) from Book",
 List.class)
 .getResultList();
for (var list : results) {
 String title = (String) list.get(0);
 String preamble = (String) list.get(1);
}

Unfortunately, not one of the types Object[], List, Map, nor Tuple lets us access an individual item in a result tuple without a type
cast. Sure Tuple does the type cast for us when we pass a class object to get(), but it’s logically identical. Fortunately there’s one
more option, as we’re about to see.

 Actually, Tuple really exists to service the criteria query API, and in that context it does enable truly typesafe
access to query results.

Hibernate 6 lets us pass an arbitrary class type with an appropriate constructor to createQuery() and will use it to package the
query results. This works extremely nicely with record types.

record BookSummary(String title, String summary) {}

List<BookSummary> results =
 entityManager.createQuery("select title, left(book.text, 200) from Book",
 BookSummary.class)
 .getResultList();
for (var result : results) {
 String title = result.title();
 String preamble = result.summary();
}

It’s important that the constructor of BookSummary has parameters which exactly match the items in the select list.

 This class does not need to be mapped or annotated in any way.

Even if the class is an entity class, the resulting instances are not managed entities and are not associated with the
session.

We must caution that this still isn’t typesafe. In fact, we’ve just pushed the typecasts down into the call to createQuery(). But at
least we don’t have to write them explicitly.

1.6.3. Instantiation

In JPQL, and in older versions of Hibernate, this functionality required more ceremony.

Result type Legacy syntax Streamlined syntax JPA standard

Map select new map(x, y) select x, y ✖/✖

List select new list(x, y) select x, y ✖/✖

Arbitrary class Record select new Record(x, y) select x, y ✔/✖

For example, the JPA-standard select new construct packages the query results into a user-written Java class instead of an array.

11

record BookSummary(String title, String summary) {}

List<BookSummary> results =
 entityManager.createQuery("select new BookSummary(title, left(book.text, 200)) from Book",
 BookSummary.class)
 .getResultList();
for (var result : results) {
 String title = result.title();
 String preamble = result.summary();
}

Simplifying slightly, the BNF for a projected item is:

selection
 : (expression | instantiation) alias?

instantiation
 : "NEW" instantiationTarget "(" selection ("," selection)* ")"

alias
 : "AS"? identifier

Where the list of selections in an instantiation is essentially a nested projection list.

12

Chapter 2. Expressions

We now switch gears, and begin describing the language from the bottom up. The very bottom of a programming language is its
syntax for literal values.

2.1. Literals

The most important literal value in this language is null. It’s assignable to any other type.

2.1.1. Boolean literals

The boolean literal values are the (case-insensitive) keywords true and false.

2.1.2. String literals

String literals are enclosed in single quotes.

select 'hello world'

To escape a single quote within a string literal, use a doubled single quote: ''.

from Book where title like 'Ender''s'

Alternatively, Java-style double-quoted strings are also allowed, with the usual Java character escape syntax.

select "hello\tworld"

This option is not much used.

2.1.3. Numeric literals

Numeric literals come in several different forms:

Kind Type Example

Integer literals Long, Integer, BigInteger 1, 3_000_000L, 2BI

Decimal literals Double, Float, BigDecimal 1.0, 123.456F, 3.14159265BD

Hexadecimal literals Long, Integer 0X1A2B, 0x1a2b

Scientific notation Double, Float, BigDecimal 1e-6, 6.674E-11F

For example:

from Book where price < 100.0

select author, count(book)
from Author as author
 join author.books as book
group by author
having count(book) > 10

The type of a numeric literal may be specified using a Java-style postfix:

Postfix Type Java type

L or l long integer long

D or d double precision double

F or f single precision float

13

Postfix Type Java type

BI or bi large integer BigInteger

BD or bd exact decimal BigDecimal

It’s not usually necessary to specify the precision explicitly.

 In a literal with an exponent, the E is case-insensitive. Similarly, the Java-style postfix is case-insensitive.

2.1.4. Date and time literals

According to the JPQL specification, date and time literals may be specified using the JDBC escape syntax. Since this syntax is rather
unpleasant to look at, HQL provides not one, but two alternatives.

Date/time type Recommended Java
type

JDBC escape syntax Ὀ� Braced literal syntax Explicitly typed literal
syntax

Date LocalDate {d 'yyyy-mm-dd'} {yyyy-mm-dd} date yyyy-mm-dd

Time LocalTime {t 'hh:mm'} {hh:mm} time hh:mm

Time with seconds LocalTime {t 'hh:mm:ss'} {hh:mm:ss} time hh:mm:ss

Datetime LocalDateTime {ts 'yyyy-mm-
ddThh:mm:ss'}

{yyyy-mm-dd hh:mm:ss} datetime yyyy-mm-dd
hh:mm:ss

Datetime with
milliseconds

LocalDateTime {ts 'yyyy-mm-
ddThh:mm:ss.millis'}

{yyyy-mm-dd
hh:mm:ss.millis}

datetime yyyy-mm-dd
hh:mm:ss.millis

Datetime with an offset OffsetDateTime {ts 'yyyy-mm-
ddThh:mm:ss+hh:mm'}

{yyyy-mm-dd hh:mm:ss
+hh:mm}

datetime yyyy-mm-dd
hh:mm:ss +hh:mm

Datetime with a time
zone

OffsetDateTime {ts 'yyyy-mm-
ddThh:mm:ss GMT'}

{yyyy-mm-dd hh:mm:ss
GMT}

datetime yyyy-mm-dd
hh:mm:ss GMT

Literals referring to the current date and time are also provided. Again there is some flexibility.

Date/time type Java type Underscored syntax Spaced syntax

Date java.time.LocalDate local_date local date

Time java.time.LocalTime local_time local time

Datetime java.time.LocalDateTime local_datetime local datetime

Offset datetime java.time.OffsetDateTime offset_datetime offset datetime

Instant java.time.Instant instant instant

Date java.sql.Date Ὀ� current_date current date

Time java.sql.Time Ὀ� current_time current time

Datetime java.sql.Timestamp Ὀ� current_timestamp current timestamp

Of these, only local date, local time, local datetime, current_date, current_time, and current_timestamp are defined by the
JPQL specification.

 The use of date and time types from the java.sql package is strongly discouraged! Always use java.time types in
new code.

14

2.1.5. Duration literals

There are two sorts of duration in HQL:

• year-day durations, that is, the length of an interval between two dates, and
• week-nanosecond durations, that is, the length of an interval between two datetimes.

For conceptual reasons, the two kinds of duration cannot be cleanly composed.

Literal duration expressions are of form n unit, for example 1 day or 10 year or 100 nanosecond.

The unit may be: day, month, quarter, year, second, minute, hour, or nanosecond.

 A HQL duration is considered to map to a Java java.time.Duration, but semantically they’re perhaps more
similar to an ANSI SQL INTERVAL type.

2.1.6. Binary string literals

HQL also provides a choice of formats for binary strings:

• the braced syntax {0xDE, 0xAD, 0xBE, 0xEF}, a list of Java-style hexadecimal byte literals, or
• the quoted syntax X’DEADBEEF' or x’deadbeef', similar to SQL.

2.1.7. Enum literals

Literal values of a Java enumerated type may be written without needing to specify the enum class name:

from Book where status <> OUT_OF_PRINT

from Book where type in (BOOK, MAGAZINE)

update Book set status = OUT_OF_PRINT

In the examples above, the enum class is inferred from the type of the expression on the left of the comparison, assignment
operator, or in predicate.

from Book
order by
 case type
 when BOOK then 1
 when MAGAZINE then 2
 when JOURNAL then 3
 else 4
 end

In this example the enum class is inferred from the type of the case expression.

2.1.8. Java constants

HQL allows any Java static constant to be used in HQL, but it must be referenced by its fully-qualified name:

select java.lang.Math.PI

2.1.9. Literal entity names

Entity names may also occur as a literal value. They do not need to be qualified.

from Payment as payment
where type(payment) = CreditCardPayment

See Types and typecasts.

15

2.2. Identification variables and path expressions

A path expression is either:

• a reference to an identification variable, or
• a compound path, beginning with a reference to an identification variable, and followed by a period-separated list of references

to entity attributes.

As an extension to the JPA spec, HQL, just like SQL, allows a compound path expression where the identification variable at the
beginning of the path is missing. That is, instead of var.foo.bar, it’s legal to write just foo.bar. But this is only allowed when the
identification variable may be unambiguously inferred from the first element, foo of the compound path. The query must have
exactly one identification variable var for which the path var.foo refers to an entity attribute. Note that we will continue to call
these paths "compound", even if they only have one element.

 This streamlines the query rather nicely when there’s just one root entity and no joins. But when the query has
multiple identification variables it makes the query much harder to understand.

If an element of a compound path refers to an association, the path expression produces an implicit join.

select book.publisher.name from Book book

An element of a compound path referring to a many-to-one or on-to-one association may have the treat function applied to it.

select treat(order.payment as CreditCardPayment).creditCardNumber from Order order

If an element of a compound path refers to a collection or many-valued association, it must have one of these special functions
applied to it.

select element(book.authors).name from Book book

No other function may be applied to a non-terminal element of a path expression.

Alternatively, if the element of the compound path refers to a list or map, it may have the indexing operator applied to it:

select book.editions[0].date from Book book

No other operator may be applied to a non-terminal element of a path expression.

2.3. Operator expressions

HQL has operators for working with strings, numeric values, and date/time types.

The operator precedence is given by this table, from highest to lowest precedence:

Precedence class Type Operators

Grouping and tuple instantiation (…) and (x, y, z)

Case lists case … end

Member reference Binary infix a.b

Function application Postfix f(x,y)

Indexing Postfix a[i]

Unary numeric Unary prefix +, -

Duration conversions Unary postfix by day and friends

Binary multiplicative Binary infix *, /, %

Binary additive Binary infix +, -

Concatenation Binary infix ||

16

Precedence class Type Operators

Nullness, emptiness, truth Unary postfix is null, is empty, is true, is false

Containment Binary infix in, not in

Between Ternary infix between, not between

Pattern matching Binary infix like, ilike, not like, not ilike

Comparison operators Binary infix =, <>, <, >, <=, >=

Nullsafe comparison Binary infix is distinct from, is not distinct from

Existence Unary prefix exists

Membership Binary infix member of, not member of

Logical negation Unary prefix not

Logical conjunction Binary infix and

Logical disjunction Binary infix or

2.3.1. String concatenation

HQL defines two ways to concatenate strings:

• the SQL-style concatenation operator, ||, and
• the JPQL-standard concat() function.

See below for details of the concat() function.

select book.title || ' by ' || listagg(author.name, ' & ')
from Book as book
 join book.authors as author
group by book

Many more operations on strings are defined below, in Functions.

2.3.2. Numeric arithmetic

The basic SQL arithmetic operators, +,-,*, and / are joined by the remainder operator %.

select (1.0 + :taxRate) * sum(item.book.price * item.quantity)
from Order as ord
 join ord.items as item
where ord.id = :oid

When both operands of a binary numeric operator have the same type, the result type of the whole expression is the same as the
operands.

 By default, the semantics of integer division depend on the database:

• On most databases, division of an integer by an integer evaluates to an integer, just like in Java. Thus, 3/2
evaluates to 1.

• But on some databases, including Oracle, MySQL, and MariaDB, integer division may result in a non-integral
value. So 3/2 evaluates to 1.5 on these databases.

This default behavior may be changed using configuration property
hibernate.query.hql.portable_integer_division. Setting this property to true instructs Hibernate to produce
SQL that emulates Java-style integer division (that is, 3/2 = 1) on platforms where that is not the native
semantics.

When the operands are of different type, one of the operands is implicitly converted to wider type, with wideness given, in
decreasing order, by the list below:

17

• Double (widest)
• Float

• BigDecimal

• BigInteger

• Long

• Integer

• Short

• Byte

Many more numeric operations are defined below, in Functions.

2.3.3. Datetime arithmetic

Arithmetic involving dates, datetimes, and durations is quite subtle. Among the issues to consider are:

• There’s two kinds of duration: year-day, and week-nanosecond durations. The first is a difference between dates; the second is a
difference between datetimes.

• We can subtract dates and datetimes, but we can’t add them.
• A Java-style duration has much too much precision, and so in order to use it for anything useful, we must somehow truncate it to

something coarser-grained.

Here we list the basic operations.

Operator Expression type Example Resulting type

- Difference between two dates your.birthday - local date year-day duration

- Difference between two datetimes local datetime - record.lastUpdated week-nanosecond
duration

- Difference of a date and a year-day duration local date - 1 day date

- Difference of a datetime and a week-nanosecond
duration

record.lastUpdated - 1 minute datetime

- Difference between two durations 1 week - 1 day duration

+ Sum of a date and a year-day duration local date + 1 week date

+ Sum of a datetime and a week-nanosecond
duration

record.lastUpdated + 1 second datetime

+ Sum of two durations 1 day + 4 hour duration

* Product of an integer and a duration billing.cycles * 30 day duration

by unit Convert a duration to an integer (1 year) by day integer

The by unit operator converts a duration to an integer, for example: (local date - your.birthday) by day evaluates to the
number of days you still have to wait.

The function extract(unit from …) extracts a field from a date, time, or datetime type, for example, extract(year from
your.birthday) produces the year in which you were born, and throws away important information about your birthday.

 Please carefully note the difference between these two operations: by and extract() both evaluate to an integer,
but they have very different uses.

Additional datetime operations, including the useful format() function, are defined below, in Functions.

2.4. Case expressions

Just like in standard SQL, there are two forms of case expression:

• the simple case expression, and
• the so-called searched case expression.

18

 Case expressions are verbose. It’s often simpler to use the coalesce(), nullif(), or ifnull() functions, as
described below in Functions for working with null values.

Simple case expressions

The syntax of the simple form is defined by:

"CASE" expression ("WHEN" expression "THEN" expression)+ ("ELSE" expression)? "END"

For example:

select
 case author.nomDePlume
 when '' then person.name
 else author.nomDePlume end
from Author as author
 join author.person as person

Searched case expressions

The searched form has the following syntax:

"CASE" ("WHEN" predicate "THEN" expression)+ ("ELSE" expression)? "END"

For example:

select
 case
 when author.nomDePlume is null then person.name
 else author.nomDePlume end
from Author as author
 join author.person as person

A case expression may contain complex expression, including operator expressions.

2.5. Tuples

A tuple instantiation is an expression like (1, 'hello'), and may be used to "vectorize" comparison expressions.

from Person where (firstName, lastName) = ('Ludwig', 'Boltzmann')

from Event where (year, day) > (year(local date), day(local date))

This syntax may be used even when the underlying SQL dialect does not support so-called "row value" constructors.

A tuple value may be compared to an embedded field:

from Person
where address = ('1600 Pennsylvania Avenue, NW', 'Washington', 'DC', 20500, 'USA')

2.6. Functions

Both HQL and JPQL define some standard functions and make them portable between databases.

 A program that wishes to remain portable between Jakarta Persistence providers should in principle limit itself to
the use of the functions which are blessed by the specification. Unfortunately, there’s not so many of them.

In some cases, the syntax of these functions looks a bit funny at first, for example, cast(number as String), or extract(year from
date), or even trim(leading '.' from string). This syntax is inspired by standard ANSI SQL, and we promise you’ll get used to it.

19

 HQL abstracts away from the actual database-native SQL functions, letting you write queries which are portable
between databases.

For some functions, and always depending on the database, a HQL function invocation translates to a quite
complicated SQL expression!

In addition, there are several ways to use a database function that’s not known to Hibernate.

2.6.1. Types and typecasts

The following special functions make it possible to discover or narrow expression types:

Special function Purpose Signature JPA standard

type() The (concrete) entity name type(e) ✔

treat() Narrow an entity type treat(e as Entity) ✔

cast() Narrow a basic type cast(x as Type) ✖

str() Cast to a string str(x) ✖

Let’s see what these functions do.

Evaluating an entity type

The function type(), applied to an identification variable, evaluates to the entity name of the referenced entity. This is mainly useful
when dealing with entity inheritance hierarchies.

select payment
from Payment as payment
where type(payment) = CreditCardPayment

Narrowing an entity type

The function treat() may be used to narrow the type of an identification variable. This is useful when dealing with entity
inheritance hierarchies.

select payment
from Payment as payment
where length(treat(payment as CreditCardPayment).cardNumber)
 between 16 and 20

The type of the expression treat(p as CreditCardPayment) is the narrowed type, CreditCardPayment, instead of the declared type
Payment of p. This allows the attribute cardNumber declared by the subtype CreditCardPayment to be referenced.

• The first argument is usually an identification variable.
• The second argument is the target type given as an unqualified entity name.

The treat() function may even occur in a join.

General typecasts

The function cast() has a similar syntax, but is used to narrow basic types.

• Its first argument is usually an attribute of an entity, or a more complex expression involving entity attributes.
• Its second argument is the target type given as an unqualified Java class name: String, Long, Integer, Double, Float, Character,
Byte, BigInteger, BigDecimal, LocalDate, LocalTime, LocalDateTime, etc.

select cast(id as String) from Order

Casting to string

The function str(x) is a synonym for cast(x as String).

20

select str(id) from Order

2.6.2. Functions for working with null values

The following functions make it easy to deal with null values:

Function Purpose Signature JPA standard

coalesce() First non-null argument coalesce(x, y, z) ✔

ifnull() Second argument if first is null ifnull(x,y) ✖

nullif() null if arguments are equal nullif(x,y) ✔

Handling null values

The coalesce() function is a sort of abbreviated case expression that returns the first non-null operand.

select coalesce(author.nomDePlume, person.name)
from Author as author
 join author.person as person

Handling null values

HQL allows ifnull() as a synonym for coalesce() in the case of exactly two arguments.

select ifnull(author.nomDePlume, person.name)
from Author as author
 join author.person as person

Producing null values

On the other hand, nullif() evaluates to null if its operands are equal, or to its first argument otherwise.

select ifnull(nullif(author.nomDePlume, person.name), 'Real name')
from Author as author
 join author.person as person

2.6.3. Functions for working with dates and times

There are some very important functions for working with dates and times.

Special function Purpose Signature JPA standard

extract() Extract a datetime field extract(field from x) ✔

format() Format a datetime as a string format(datetime as pattern) ✖

trunc() or
truncate()

Datetime truncation truncate(datetime, field) ✖

Extracting date and time fields

The special function extract() obtains a single field of a date, time, or datetime.

• Its first argument is an expression that evaluates to a date, time, or datetime.
• Its second argument is a date/time field type.

Field types include: day, month, year, second, minute, hour, day of week, day of month, week of year, date, time, epoch and more. For
a full list of field types, see the Javadoc for TemporalUnit.

from Order where extract(date from created) = local date

21

https://docs.jboss.org/hibernate/orm/6.5/javadocs/org/hibernate/query/TemporalUnit.html

select extract(year from created), extract(month from created) from Order

The following functions are abbreviations for extract():

Function Long form using extract() JPA standard

year(x) extract(year from x) ✖

month(x) extract(month from x) ✖

day(x) extract(day from x) ✖

hour(x) extract(year from x) ✖

minute(x) extract(year from x) ✖

second(x) extract(year from x) ✖

 These abbreviations aren’t part of the JPQL standard, but on the other hand they’re a lot less verbose.

select year(created), month(created) from Order

Formatting dates and times

The format() function formats a date, time, or datetime according to a pattern.

• Its first argument is an expression that evaluates to a date, time, or datetime.
• Its second argument is a formatting pattern, given as a string.

The pattern must be written in a subset of the pattern language defined by Java’s java.time.format.DateTimeFormatter.

select format(local datetime as 'yyyy-MM-dd HH:mm:ss')

For a full list of format() pattern elements, see the Javadoc for Dialect.appendDatetimeFormat.

Truncating a date or time type

The truncate() function truncates the precision of a date, time, or datetime to the temporal unit specified by field type.

• Its first argument is an expression that evaluates to a date, time, or datetime.
• Its second argument is a date/time field type, specifying the precision of the truncated value.

Supported temporal units are: year, month, day, hour, minute or second.

select trunc(local datetime, hour)

Truncating a date, time or datetime value means obtaining a value of the same type in which all temporal units smaller than field
have been pruned. For hours, minutes and second this means setting them to 00. For months and days, this means setting them to
01.

2.6.4. Functions for working with strings

Naturally, there are a good number of functions for working with strings.

Function Purpose Syntax JPA standard /
ANSI SQL
Standard

upper() The string, with lowercase characters
converted to uppercase

upper(str) ✔ / ✔

lower() The string, with uppercase characters
converted to lowercase

lower(str) ✔ / ✔

22

https://docs.jboss.org/hibernate/orm/6.5/javadocs/org/hibernate/dialect/Dialect.html#appendDatetimeFormat

Function Purpose Syntax JPA standard /
ANSI SQL
Standard

length() The length of the string length(str) ✔ / ✖

concat() Concatenate strings concat(x, y, z) ✔ / ✖

locate() Location of string within a string locate(patt, str),
locate(patt, str, start)

✔ / ✖

position() Similar to locate() position(patt in str) ✖ / ✔

substring() Substring of a string (JPQL-style) substring(str, start),
substring(str, start, len)

✔ / ✖

substring() Substring of a string (ANSI SQL-style) substring(str from start),
substring(str from start for len)

✖ / ✔

trim() Trim characters from string trim(str),
trim(leading from str),
trim(trailing from str), or
trim(leading char from str)

✔ / ✔

overlay() For replacing a substring overlay(str placing rep from start),
overlay(str placing rep from start for len)

✖ / ✔

pad() Pads a string with whitespace, or with
a specified character

pad(str with len),
pad(str with len leading),
pad(str with len trailing), or
pad(str with len leading char)

✖ / ✖

left() The leftmost characters of a string left(str, len) ✖ / ✖

right() The rightmost characters of a string right(str, len) ✖ / ✖

replace() Replace every occurrence of a pattern
in a string

replace(str, patt, rep) ✖ / ✖

repeat() Concatenate a string with itself
multiple times

repeat(str, times) ✖ / ✖

collate() Select a collation collate(p.name as collation) ✖ / ✖

Let’s take a closer look at just some of these.

 Contrary to Java, positions of characters within strings are indexed from 1 instead of 0!

Concatenating strings

The JPQL-standard and ANSI SQL-standard concat() function accepts a variable number of arguments, and produces a string by
concatenating them.

select concat(book.title, ' by ', listagg(author.name, ' & '))
from Book as book
 join book.authors as author
group by book

Finding substrings

The JPQL function locate() determines the position of a substring within another string.

• The first argument is the pattern to search for within the second string.
• The second argument is the string to search in.
• The optional third argument is used to specify a position at which to start the search.

23

select locate('Hibernate', title) from Book

The position() function has a similar purpose, but follows the ANSI SQL syntax.

select position('Hibernate' in title) from Book

Slicing strings

Unsurprisingly, substring() returns a substring of the given string.

• The second argument specifies the position of the first character of the substring.
• The optional third argument specifies the maximum length of the substring.

select substring(title, 1, position(' for Dummies' in title)) from Book /* JPQL-style */

select substring(title from 1 for position(' for Dummies' in title)) from Book /* ANSI SQL-style */

Trimming strings

The trim() function follows the syntax and semantics of ANSI SQL. It may be used to trim leading characters, trailing characters,
or both.

select trim(title) from Book

select trim(trailing ' ' from text) from Book

Its BNF is funky:

"TRIM" "(" (("LEADING" | "TRAILING" | "BOTH")? trimCharacter? "FROM")? expression ")" ;

Padding strings

The pad() function has a syntax inspired by trim().

select concat(pad(b.title with 40 trailing '.'),
 pad(a.firstName with 10 leading),
 pad(a.lastName with 10 leading))
from Book as b
 join b.authors as a

Its BNF is given by:

"PAD" "(" expression "WITH" expression ("LEADING" | "TRAILING") padCharacter? ")"

Collations

The collate() function selects a collation to be used for its string-valued argument. Collations are useful for binary comparisons
with < or >, and in the order by clause.

For example, collate(p.name as ucs_basic) specifies the SQL standard collation ucs_basic.

 Collations aren’t very portable between databases.

 Some PostgreSQL collation names must be quoted with backticks, for example, collate(name as `zh_TW.UTF-
8`).

 The @Collate annotation may be used to specify the collation of a column, which is usually more convenient than
using the collate() function.

24

2.6.5. Numeric functions

Of course, we also have a number of functions for working with numeric values.

Function Purpose Signature JPA standard

abs() The magnitude of a number abs(x) ✔

sign() The sign of a number sign(x) ✔

mod() Remainder of integer division mod(n,d) ✔

sqrt() Square root of a number sqrt(x) ✔

exp() Exponential function exp(x) ✔

power() Exponentiation power(x,y) ✔

ln() Natural logarithm ln(x) ✔

round() Numeric rounding round(number),
round(number, places)

✔

trunc() or
truncate()

Numeric truncation truncate(number),
truncate(number, places)

✖

floor() Floor function floor(x) ✔

ceiling() Ceiling function ceiling(x) ✔

log10() Base-10 logarithm log10(x) ✖

log() Arbitrary-base logarithm log(b,x) ✖

pi π pi ✖

sin(), cos(),
tan(), asin(),
acos(), atan()

Basic trigonometric functions sin(theta), cos(theta) ✖

atan2() Two-argument arctangent (range (-π,π]) atan2(y, x) ✖

sinh(), cosh(),
tanh()

Hyperbolic functions sinh(x), cosh(x), tanh(x) ✖

degrees() Convert radians to degrees degrees(x) ✖

radians() Convert degrees to radians radians(x) ✖

least() Return the smallest of the given arguments least(x, y, z) ✖

greatest() Return the largest of the given arguments greatest(x, y, z) ✖

bitand(),
bitor(),
bitxor()

Bitwise functions bitand(x,y) ✖

We haven’t included aggregate functions, ordered set aggregate functions, or window functions in this list, because their purpose is
more specialized, and because they come with extra special syntax.

2.6.6. Functions for dealing with collections

The functions described in this section are especially useful when dealing with @ElementCollection mappings, or with collection
mappings involving an @OrderColumn or @MapKeyColumn.

25

The following functions accept either:

1. an identification variable that refers to a joined collection or many-valued association, or
2. a compound path that refers to a collection or many-valued association of an entity.

In case 2, application of the function produces an implicit join.

Function Applies to Purpose JPA standard

size() Any collection The size of a collection ✔

element() Any collection The element of a set or list ✖

index() Lists The index of a list element ✔

key() Maps The key of a map entry ✔

value() Maps The value of a map entry ✔

entry() Ὀ� Maps The whole entry in a map ✔

The next group of functions always accept a compound path referring to a collection or many-valued association of an entity.
They’re interpreted as referring to the collection as a whole.

Function Applies to Purpose JPA standard

elements() Any collection The elements of a set or list, collectively ✖

indices() Lists The indexes of a list, collectively ✖

keys() Maps The keys of a map, collectively ✖

values() Maps The values of a map, collectively ✖

Application of one of these function produces an implicit subquery or implicit join.

This query has an implicit join:

select title, element(tags) from Book

This query has an implicit subquery:

select title from Book where 'hibernate' in elements(tags)

 It never makes sense to apply the functions elements(), indices(), keys(), or values() to an identification
variable or single-valued path expression. These functions must be applied to a reference to a many-valued path
expression.

Collection sizes

The size() function returns the number of elements of a collection or to-many association.

select name, size(books) from Author

Set or list elements

The element() function returns a reference to an element of a joined set or list. For an identification variable (case 1 above), this
function is optional. For a compound path (case 2), it’s required.

List indexes

The index() function returns a reference to the index of a joined list.

In this example, element() is optional, but index() is required:

26

select id(book), index(ed), element(ed)
from Book book as book
 join book.editions as ed

Map keys and values

The key() function returns a reference to a key of a joined map. The value() function returns a reference to its value.

select key(entry), value(entry)
from Thing as thing
 join thing.entries as entry

Quantification over collections

The functions elements(), indices(), keys(), and values() are used to quantify over collections. We may use them with:

• an in or exists predicate,
• a relational comparison, or
• an aggregate function.

Shortcut Equivalent subquery

exists elements(book.editions) exists (select ed from book.editions as ed)

2 in indices(book.editions) 2 in (select index(ed) from book.editions as ed)

10 > all(elements(book.printings)) 10 > all(select pr from book.printings as pr)

max(elements(book.printings)) (select max(pr) from book.printings as pr)

For example:

select title from Book where 'hibernate' in elements(tags)

Don’t confuse the elements() function with element(), the indices() function with index(), the keys() function with key(), or the
values() function with value(). The functions named in singular deal with elements of "flattened" collections. If not already joined,
they add an implicit join to the query. The functions with plural naming do not flatten a collection by joining it.

 The following queries are different:

select title, max(index(revisions)) from Book /* implicit join */

select title, max(indices(revisions)) from Book /* implicit subquery */

The first query produces a single row, with max() taken over all books. The second query produces a row per book,
with max() taken over the collection elements belonging to the given book.

2.6.7. Functions for working with ids and versions

Finally, the following functions evaluate the id, version, or natural id of an entity, or the foreign key of a to-one association:

Function Purpose JPA standard

id() The value of the entity @Id attribute. ✖

version() The value of the entity @Version attribute. ✖

naturalid() The value of the entity @NaturalId attribute. ✖

fk() The value of the foreign key column mapped by a @ManyToOne (or logical @OneToOne) association.
Useful with associations annotated @NotFound.

✖

27

2.6.8. Embedding SQL expressions

The following special functions let us embed a call to a native SQL function, refer directly to a column, or evaluate an expression
written in native SQL.

Function Purpose Signature JPA standard

function() Call a SQL function function('fun', arg1, arg2) ✔

function() Call a SQL function function(fun, arg1, arg2),
function(fun as Type, arg1, arg2)

✖

column() A column value column(entity.column),
column(entity.column as Type)

✖

sql() Evaluate a SQL expression sql('text', arg1, arg2) ✖

 Before using one of these functions, ask yourself if it might be better to just write the whole query in native SQL.

Direct column references

The column() function lets us refer to an unmapped column of a table. The column name must be qualified by an identification
variable or path expression.

select column(log.ctid as String)
from Log log

Of course, the table itself must be mapped by an entity class.

Native and user-defined functions

The functions we’ve described above are the functions abstracted by HQL and made portable across databases. But, of course, HQL
can’t abstract every function in your database.

There are several ways to call native or user-defined SQL functions.

• A native or user-defined function may be called using JPQL’s function syntax, for example, function('sinh', phi), or HQL’s
extension to that syntax, for example function(sinh as Double, phi). (This is the easiest way, but not the best way.)

• A user-written FunctionContributor may register user-defined functions.
• A custom Dialect may register additional native functions by overriding initializeFunctionRegistry().

 Registering a function isn’t hard, but is beyond the scope of this guide.

(It’s even possible to use the APIs Hibernate provides to make your own portable functions!)

Fortunately, every built-in Dialect already registers many native functions for the database it supports.

 Try setting the log category org.hibernate.HQL_FUNCTIONS to debug. Then at startup Hibernate will log a list of
type signatures of all registered functions.

Embedding native SQL in HQL

The special function sql() allows the use of native SQL fragments inside an HQL query.

The signature of this function is sql(pattern[, argN]*), where pattern must be a string literal but the remaining arguments may be
of any type. The pattern literal is unquoted and embedded in the generated SQL. Occurrences of ? in the pattern are replaced with
the remaining arguments of the function.

We may use this, for example, to perform a native PostgreSQL typecast:

from Computer c where c.ipAddress = sql('?::inet', '127.0.0.1')

This results in SQL logically equivalent to:

28

select * from Computer c where c.ipAddress = '127.0.0.1'::inet

Or we can use a native SQL operator:

from Human h order by sql('(? <-> ?)', h.workLocation, h.homeLocation)

And this time the SQL is logically equivalent to:

select * from Human h where (h.workLocation <-> h.homeLocation)

2.7. Predicates

A predicate is an operator which, when applied to some argument, evaluates to true or false. In the world of SQL-style ternary
logic, we must expand this definition to encompass the possibility that the predicate evaluates to null. Typically, a predicate
evaluates to null when one of its arguments is null.

Predicates occur in the where clause, the having clause and in searched case expressions.

2.7.1. Comparison operators

The binary comparison operators are borrowed from SQL: =, >, >=, <, <=, <>.

 If you prefer, HQL treats != as a synonym for <>.

The operands should be of the same type.

from Book where price < 1.0

from Author as author where author.nomDePlume <> author.person.name

select id, total
from (
 select ord.id as id, sum(item.book.price * item.quantity) as total
 from Order as ord
 join Item as item
 group by ord
)
where total > 100.0

2.7.2. The between predicate

The ternary between operator, and its negation, not between, determine if a value falls within a range.

Of course, all three operands must be of compatible type.

from Book where price between 1.0 and 100.0

2.7.3. Operators for dealing with null

The following operators make it easier to deal with null values. These predicates never evaluate to null.

Operator Negation Type Semantics

is null is not null Unary postfix true if the value to the left is null, or false if it is not null

is distinct from is not distinct from Binary true if the value on the left is equal to the value on the right,
or if both values are null, and false otherwise

from Author where nomDePlume is not null

29

2.7.4. Operators for dealing with boolean values

These operators perform comparisons on values of type boolean. These predicates never evaluate to null.

 The values true and false of the boolean basic type are different to the logical true or false produced by a
predicate.

For logical operations on predicates, see Logical operators below.

Operator Negation Type Semantics

is true is not true Unary postfix true if the value to the left is true, or false otherwise

is false is not false Binary true if the value to the left is false, or false otherwise

from Book where discontinued is not true

2.7.5. Collection predicates

The following operators apply to collection-valued attributes and to-many associations.

Operator Negation Type Semantics

is empty is not empty Unary postfix true if the collection or association on the left has no elements

member of not member of Binary true if the value on the left is a member of the collection or
association on the right

from Author where books is empty

select author, book
from Author as author, Book as book
where author member of book.authors

2.7.6. String pattern matching

The like operator performs pattern matching on strings. Its friend ilike performs case-insensitive matching.

Their syntax is defined by:

expression "NOT"? ("LIKE" | "ILIKE") expression ("ESCAPE" character)?

The expression on the right is a pattern, where:

• _ matches any single character,
• % matches any number of characters, and
• if an escape character is specified, it may be used to escape either of these wildcards.

from Book where title not like '% for Dummies'

The optional escape character allows a pattern to include a literal _ or % character.

As you can guess, not like and not ilike are the enemies of like and ilike, and evaluate to the exact opposite boolean values.

2.7.7. The in predicate

The in predicates evaluates to true if the value to its left is in … well, whatever it finds to its right.

Its syntax is unexpectedly complicated:

expression "NOT"? "IN" inList

inList

30

 : collectionQuantifier "(" simplePath ")"
 | "(" (expression ("," expression)*)? ")"
 | "(" subquery ")"
 | parameter

This less-than-lovely fragment of the HQL ANTLR grammar tells us that the thing to the right might be:

• a list of values enclosed in parentheses,
• a subquery,
• one of the collection-handling functions defined above, or
• a query parameter,

The type of the expression on the left, and the types of all the values on the right must be compatible.

 JPQL limits the legal types to string, numeric, date/time, and enum types, and in JPQL the left expression must be
either:

• a state field, which means a basic attribute, excluding associations and embedded attributes, or
• an entity type expression.

HQL is far more permissive. HQL itself does not restrict the type in any way, though the database itself might. Even
embedded attributes are allowed, although that feature depends on the level of support for tuple or "row value"
constructors in the underlying database.

from Payment as payment
where type(payment) in (CreditCardPayment, WireTransferPayment)

from Author as author
where author.person.name in (select name from OldAuthorData)

from Book as book
where :edition in elements(book.editions)

It’s quite common to have a parameterized list of values.

 Here’s a very useful idiom:

List<Book> books =
 session.createSelectionQuery("from Book where isbn in :isbns", Book.class)
 .setParameterList("isbns", listOfIsbns)
 .getResultList();

We may even "vectorize" an in predicate, using a tuple constructor and a subquery with multiple selection items:

from Author as author
where (author.person.name, author.person.birthdate)
 in (select name, birthdate from OldAuthorData)

2.7.8. Comparison operators and subqueries

The binary comparisons we met above may involve a quantifier, either:

• a quantified subquery, or
• a quantifier applied to one of the functions defined above.

The quantifiers are unary prefix operators: all, every, any, and some.

Subquery
operator

Synonym Semantics

every all Evaluates to true of the comparison is true for every value in the result set of the subquery

any some Evaluates to true of the comparison is true for at least one value in the result set of the subquery

31

from Publisher pub where 100.0 < all(select price from pub.books)

from Publisher pub where :title = some(select title from pub.books)

2.7.9. The exists predicate

The unary prefix exists operator evaluates to true if the thing to its right is nonempty.

The thing to its right might be:

• a subquery, or
• one of the functions defined above.

As you can surely guess, not exists evaluates to true if the thing to the right is empty.

from Author where exists elements(books)

from Author as author
where exists (
 from Order join items
 where book in elements(author.books)
)

2.7.10. Logical operators

The logical operators are binary infix and and or, and unary prefix not.

Just like SQL, logical expressions are based on ternary logic. A logical operator evaluates to null if it has a null operand.

32

Chapter 3. Root entities and joins

The from clause, and its subordinate join clauses sit right at the heart of most queries.

3.1. Declaring root entities

The from clause is responsible for declaring the entities available in the rest of the query, and assigning them aliases, or, in the
language of the JPQL specification, identification variables.

3.1.1. Identification variables

An identification variable is just a name we can use to refer to an entity and its attributes from expressions in the query. It may be
any legal Java identifier. According to the JPQL specification, identification variables must be treated as case-insensitive language
elements.

 The identification variable is actually optional, but for queries involving more than one entity it’s almost always a
good idea to declare one.

This works, but it isn’t particularly good form:

from Publisher join books join authors join person where ssn = :ssn

Identification variables may be declared with the as keyword, but this is optional.

3.1.2. Root entity references

A root entity reference, or what the JPQL specification calls a range variable declaration, is a direct reference to a mapped @Entity
type by its entity name.

 Remember, the entity name is the value of the name member of the @Entity annotation, or the unqualified Java
class name by default.

select book from Book as book

In this example, Book is the entity name, and book is the identification variable. The as keyword is optional.

Alternatively, a fully-qualified Java class name may be specified. Then Hibernate will query every entity which inherits the named
type.

select doc from org.hibernate.example.AbstractDocument as doc where doc.text like :pattern

Of course, there may be multiple root entities.

select a, b
from Author a, Author b, Book book
where a in elements(book.authors)
 and b in elements(book.authors)

This query may even be written using the syntax cross join in place of the commas:

select a, b
from Book book
 cross join Author a
 cross join Author b
where a in elements(book.authors)
 and b in elements(book.authors)

Of course, it’s possible to write old-fashioned pre-ANSI-era joins:

select book.title, publisher.name
from Book book, Publisher publisher
where book.publisher = publisher
 and book.title like :titlePattern

33

But we never write HQL this way.

3.1.3. Polymorphism

HQL and JPQL queries are inherently polymorphic. Consider:

select payment from Payment as payment

This query names the Payment entity explicitly. But the CreditCardPayment and WireTransferPayment entities inherit Payment, and so
payment ranges over all three types. Instances of all these entities are returned by the query.

 The query from java.lang.Object is completely legal. (But not very useful!)

It returns every object of every mapped entity type.

3.1.4. Derived roots

A derived root is an uncorrelated subquery which occurs in the from clause.

select id, total
from (
 select ord.id as id, sum(item.book.price * item.quantity) as total
 from Order as ord
 join Item as item
 group by ord
)
where total > 100.0

The derived root may declare an identification variable.

select stuff.id, stuff.total
from (
 select ord.id as id, sum(item.book.price * item.quantity) as total
 from Order as ord
 join Item as item
 group by ord
) as stuff
where total > 100.0

This feature can be used to break a more complicated query into smaller pieces.

 We emphasize that a derived root must be an uncorrelated subquery. It may not refer to other roots declared in
the same from clause.

A subquery may also occur in a join, in which case it may be a correlated subquery.

3.1.5. Common table expressions in from clause

A common table expression (CTE) is like a derived root with a name. We’ll discuss CTEs later.

3.2. Declaring joined entities

Joins allow us to navigate from one entity to another, via its associations, or via explicit join conditions. There are:

• explicit joins, declared within the from clause using the keyword join, and
• implicit joins, which don’t need to be declared in the from clause.

An explicit join may be either:

• an inner join, written as join or inner join,
• a left outer join, written as left join or left outer join,
• a right outer join, written as right join or right outer join, or
• a full outer join, written as full join or full outer join.

34

3.2.1. Explicit root joins

An explicit root join works just like an ANSI-style join in SQL.

select book.title, publisher.name
from Book book
 join Publisher publisher
 on book.publisher = publisher
where book.title like :titlePattern

The join condition is written out explicitly in the on clause.

 This looks nice and familiar, but it’s not the most common sort of join in HQL or JPQL.

3.2.2. Explicit association joins

Every explicit association join specifies an entity attribute to be joined. The specified attribute:

• is usually a @OneToMany, @ManyToMany, @OneToOne, or @ManyToOne association, but
• it could be an @ElementCollection, and
• it might even be an attribute of embeddable type.

In the case of an association or collection, the generated SQL will have a join of the same type. (For a many-to-many association it
will have two joins.) In the case of an embedded attribute, the join is purely logical and does not result in a join in the generated SQL.

An explicit join may assign an identification variable to the joined entity.

from Book as book
 join book.publisher as publisher
 join book.authors as author
where book.title like :titlePattern
select book.title, author.name, publisher.name

For an outer join, we must write our query to accommodate the possibility that the joined association is missing.

from Book as book
 left join book.publisher as publisher
 join book.authors as author
where book.title like :titlePattern
select book.title, author.name, ifnull(publisher.name, '-')

For further information about collection-valued association references, see Joining collections and many-valued associations.

3.2.3. Explicit association joins with join conditions

The with or on clause allows explicit qualification of the join conditions.

 The specified join conditions are added to the join conditions specified by the foreign key association. That’s why,
historically, HQL uses the keword with here: "with" emphasizes that the new condition doesn’t replace the
original join conditions.

The with keyword is specific to Hibernate. JPQL uses on.

Join conditions occurring in the with or on clause are added to the on clause in the generated SQL.

from Book as book
 left join book.publisher as publisher
 with publisher.closureDate is not null
 left join book.authors as author
 with author.type <> COLLABORATION
where book.title like :titlePattern
select book.title, author.name, publisher.name

35

3.2.4. Association fetching

A fetch join overrides the laziness of a given association, specifying that the association should be fetched with a SQL join. The join
may be an inner or outer join.

• A join fetch, or, more explicitly, inner join fetch, only returns base entities with an associated entity.
• A left join fetch, or—for lovers of verbosity—left outer join fetch, returns all the base entities, including those which have

no associated joined entity.

 This is one of the most important features of Hibernate. To achieve acceptable performance with HQL, you’ll need
to use join fetch quite often. Without it, you’ll quickly run into the dreaded "n+1 selects" problem.

For example, if Person has a one-to-many association named phones, the use of join fetch in the following query specifies that the
collection elements should be fetched in the same SQL query:

select book
from Book as book
 left join fetch book.publisher
 join fetch book.authors

In this example, we used a left outer join for book.publisher because we also wanted to obtain books with no publisher, but a
regular inner join for book.authors because every book has at least one author.

A query may have more than one fetch join, but be aware that:

• it’s perfectly safe to fetch several to-one associations in series or parallel in a single query, and
• a single series of nested fetch joins is also fine, but
• fetching multiple collections or to-many associations in parallel results in a Cartesian product at the database level, and might

exhibit very poor performance.

HQL doesn’t disallow it, but it’s usually a bad idea to apply a restriction to a join fetched entity, since the elements of the fetched
collection would be incomplete. Indeed, it’s best to avoid even assigning an identification variable to a fetched joined entity except
for the purpose of specifying a nested fetch join.

 Fetch joins should usually be avoided in limited or paged queries. This includes:

• queries executed with limits specified via the setFirstResult() and setMaxResults() methods of Query, or
• queries with a limit or offset declared in HQL, described below in Limits and offsets.

Nor should they be used with the scroll() and stream() methods of the Query interface.

Fetch joins are disallowed in subqueries, where they would make no sense.

3.2.5. Joins with typecasts

An explicit join may narrow the type of the joined entity using treat().

from Order as ord
 join treat(ord.payments as CreditCardPayment) as creditCardPayment
where length(creditCardPayment.cardNumber) between 16 and 20
select ord.id, creditCardPayment.cardNumber, creditCardPayment.amount

Here, the identification variable ccp declared to the right of treat() has the narrowed type CreditCardPayment, instead of the
declared type Payment. This allows the attribute cardNumber declared by the subtype CreditCardPayment to be referenced in the rest
of the query.

See Types and typecasts for more information about treat().

3.2.6. Subqueries in joins

A join clause may contain a subquery, either:

• an uncorrelated subquery, which is almost the same as a derived root, except that it may have an on restriction, or
• a lateral join, which is a correlated subquery, and may refer to other roots declared earlier in the same from clause.

The lateral keyword just distinguishes the two cases.

36

from Phone as phone
 left join (
 select call.duration as duration, call.phone.id as cid
 from Call as call
 order by call.duration desc
 limit 1
) as longest on cid = phone.id
where phone.number = :phoneNumber
select longest.duration

This query may also be expressed using a lateral join:

from Phone as phone
 left join lateral (
 select call.duration as duration
 from phone.calls as call
 order by call.duration desc
 limit 1
) as longest
where phone.number = :phoneNumber
select longest.duration

A lateral join may be an inner or left outer join, but not a right join, nor a full join.

 Traditional SQL doesn’t allow correlated subqueries in the from clause. A lateral join is essentially just that, but
with a different syntax to what you might expect.

On some databases, join lateral is written cross apply. And on Postgres it’s plain lateral, without join.

It’s almost as if they’re deliberately trying to confuse us.

Lateral joins are particularly useful for computing top-N elements of multiple groups.

 Most databases support some flavor of join lateral, and Hibernate emulates the feature for databases which
don’t. But emulation is neither very efficient, nor does it support all possible query shapes, so it’s important to
test on your target database.

3.2.7. Implicit association joins (path expressions)

It’s not necessary to explicitly join every entity that occurs in a query. Instead, entity associations may be navigated, just like in
Java:

• if an attribute is of embedded type, or is a to-one association, it may be further navigated, but
• if an attribute is of basic type, it is considered terminal, and may not be further navigated, and
• if an attribute is collection-valued, or is a to-many association, it may be navigated, but only with the help of value(), element(),

or key().

It’s clear that:

• A path expression like author.name with only two elements just refers to state held directly by an entity with an alias author
defined in from or join.

• But a longer path expression, for example, author.person.name, might refer to state held by an associated entity. (Alternatively,
it might refer to state held by an embedded class.)

In the second case, Hibernate with automatically add a join to the generated SQL if necessary.

from Book as book
where book.publisher.name like :pubName

As in this example, implicit joins usually appear outside the from clause of the HQL query. However, they always affect the from
clause of the SQL query.

The example above is equivalent to:

37

select book
from Book as book
 join book.publisher as pub
where pub.name like :pubName

Note that:

• Implicit joins are always treated as inner joins.
• Multiple occurrences of the same implicit join always refer to the same SQL join.

This query:

select book
from Book as book
where book.publisher.name like :pubName
 and book.publisher.closureDate is null

results in just one SQL join, and is just a different way to write:

select book
from Book as book
 join book.publisher as pub
where pub.name like :pubName
 and pub.closureDate is null

3.2.8. Joining collections and many-valued associations

When a join involves a collection or many-valued association, the declared identification variable refers to the elements of the
collection, that is:

• to the elements of a Set,
• to the elements of a List, not to their indices in the list, or
• to the values of a Map, not to their keys.

select publisher.name, author.name
from Publisher as publisher
 join publisher.books as book
 join book.authors author
where author.name like :namePattern

In this example, the identification variable author is of type Author, the element type of the list Book.authors. But if we need to refer
to the index of an Author in the list, we need some extra syntax.

You might recall that we mentioned List indexes and Map keys and values a bit earlier. These functions may be applied to the
identification variable declared in a collection join or many-valued association join.

Function Applies to Interpretation Notes

value() or
element()

Any collection The collection element or map entry value Often optional.

index() Any List with an index
column

The index of the element in the list For backward compatibility, it’s also an
alternative to key(), when applied to a map.

key() Any Map The key of the entry in the list If the key is of entity type, it may be further
navigated.

entry() Any Map The map entry, that is, the Map.Entry of key
and value.

Only legal as a terminal path, and only
allowed in the select clause.

In particular, index() and key() obtain a reference to a list index or map key.

select book.title, author.name, index(author)
from Book as book
 join book.authors as author

38

select publisher.name, leadAuthor.name
from Publisher as publisher
 join publisher.books as book
 join book.authors leadAuthor
where leadAuthor.name like :namePattern
 and index(leadAuthor) == 0

3.2.9. Implicit joins involving collections

A path expression like book.authors.name is not considered legal. We can’t just navigate a many-valued association with this syntax.

Instead, the functions element(), index(), key(), and value() may be applied to a path expression to express an implicit join. So we
must write element(book.authors).name or index(book.authors).

select book.title, element(book.authors).name, index(book.authors)
from Book book

An element of an indexed collection (an array, list, or map) may even be identified using the index operator:

select publisher.name, book.authors[0].name
from Publisher as publisher
 join publisher.books as book
where book.authors[0].name like :namePattern

39

Chapter 4. Selection, projection, and aggregation

Joining is one kind of relational operation. It’s an operation that produces relations (tables) from other relations. Such operations,
taken together, form the relational algebra.

We must now understand the rest of this family: restriction a.k.a. selection, projection, aggregation, union/intersection, and, finally,
ordering and limiting, operations which are not strictly part of the calculus of relations, but which usually come along for the ride
because they’re very useful.

We’ll start with the operation that’s easiest to understand.

4.1. Restriction

The where clause restricts the results returned by a select query or limits the scope of an update or delete query.

 This operation is usually called selection, but since that term is often confused with the select keyword, and since
both projection and selection involve "selecting" things, here we’ll use the less-ambiguous term restriction.

A restriction is nothing more than a single logical expression, a topic we exhausted above in Predicates. Therefore, we’ll move
quickly onto the next, and more interesting, operation.

4.2. Aggregation

An aggregate query is one with aggregate functions in its projection list. It collapses multiple rows into a single row. Aggregate
queries are used for summarizing and analysing data.

An aggregate query might have a group by clause. The group by clause divides the result set into groups, so that a query with
aggregate functions in the select list returns not a single result for the whole query, but one result for each group. If an aggregate
query doesn’t have a group by clause, it always produces a single row of results.

 In short, grouping controls the effect of aggregation.

A query with aggregation may also have a having clause, a restriction applied to the groups.

4.2.1. Aggregation and grouping

The group by clause looks quite similar to the select clause—it has a list of grouped items, but:

• if there’s just one item, then the query will have a single result for each unique value of that item, or
• if there are multiple items, the query will have a result for each unique combination or their values.

The BNF for a grouped item is just:

identifier | INTEGER_LITERAL | expression

Consider the following queries:

select book.isbn,
 sum(quantity) as totalSold,
 sum(quantity * book.price) as totalBilled
from Item
where book.isbn = :isbn

select book.isbn,
 year(order.dateTime) as year,
 sum(quantity) as yearlyTotalSold,
 sum(quantity * book.price) as yearlyTotalBilled
from Item
where book.isbn = :isbn
group by year(order.dateTime)

The first query calculates complete totals over all orders in years. The second calculates totals for each year, after grouping the
orders by year.

40

4.2.2. Totals and subtotals

The special functions rollup() and cube() may be used in the group by clause, when supported by the database. The semantics are
identical to SQL.

These functions are especially useful for reporting.

• A group by clause with rollup() is used to produce subtotals and grand totals.
• A group by clause with cube() allows totals for every combination of columns.

4.2.3. Aggregation and restriction

In a grouped query, the where clause applies to the non-aggregated values (it determines which rows will make it into the
aggregation). The having clause also restricts results, but it operates on the aggregated values.

In an example above, we calculated totals for every year for which data was available. But our dataset might extend far back into the
past, perhaps even as far back as those terrible dark ages before Hibernate 2.0. So let’s restrict our result set to data from our own
more civilized times:

select book.isbn,
 year(order.dateTime) as year,
 sum(quantity) as yearlyTotalSold,
 sum(quantity * book.price) as yearlyTotalBilled
from Item
where book.isbn = :isbn
group by year(order.dateTime)
having year(order.dateTime) > 2003
 and sum(quantity) > 0

The having clause follows the same rules as the where clause and is also just a logical predicate. The having restriction is applied
after grouping and aggregation has already been performed, whereas the where clause is applied before the data is grouped or
aggregated.

4.3. Projection

The select list identifies which objects and values to return as the query results. This operation is called projection.

selectClause
 : "SELECT" "DISTINCT"? selection (","" selection)*

Any of the expression types discussed in Expressions may occur in the projection list, unless otherwise noted.

 If a query has no explicit select list, then, as we saw much earlier, the projection is inferred from the entities and
joins occurring in the from clause, together with the result type specified by the call to createQuery(). But it’s
better to specify the projection explicitly, except in the simplest cases.

4.3.1. Duplicate removal

The distinct keyword helps remove duplicate results from the query result list. It’s only effect is to add distinct to the generated
SQL.

select distinct lastName from Person

select distinct author
from Publisher as pub
 join pub.books as book
 join book.authors as author
where pub.id = :pid

 As of Hibernate 6, duplicate results arising from the use of join fetch are automatically removed by Hibernate in
memory, after reading the database results and materializing entity instances as Java objects. It’s no longer
necessary to remove duplicate results explicitly, and, in particular, distinct should not be used for this purpose.

41

4.3.2. Aggregate functions

It’s common to have aggregate functions like count(), sum(), and max() in a select list. Aggregate functions are special functions that
reduce the size of the result set.

The standard aggregate functions defined in both ANSI SQL and JPQL are these ones:

Aggregate function Argument type Result type JPA standard /
ANSI SQL
standard

count(), including count(distinct),
count(all), and count(*)

Any Long ✔/✔

avg() Any numeric type Double ✔/✔

min() Any numeric type, or string Same as the argument type ✔/✔

max() Any numeric type, or string Same as the argument type ✔/✔

sum() Any numeric type See table below ✔/✔

var_pop(), var_samp() Any numeric type Double ✖/✔

stddev_pop(), stddev_samp() Any numeric type Double ✖/✔

select count(distinct item.book)
from Item as item
where year(item.order.dateTime) = :year

select sum(item.quantity) as totalSales
from Item as item
where item.book.isbn = :isbn

select
 year(item.order.dateTime) as year,
 sum(item.quantity) as yearlyTotal
from Item as item
where item.book.isbn = :isbn
group by year(item.order.dateTime)

select
 month(item.order.dateTime) as month,
 avg(item.quantity) as monthlyAverage
from Item as item
where item.book.isbn = :isbn
group by month(item.order.dateTime)

In the case of sum(), the rules for assigning a result type are:

Argument type Result type

Any integral numeric type except BigInteger Long

Any floating point numeric type Double

BigInteger BigInteger

BigDecimal BigDecimal

HQL defines two additional aggregate functions which accept a logical predicate as an argument.

42

Aggregate function Argument type Result type JPA standard

any() Logical predicate Boolean ✖

every() Logical predicate Boolean ✖

We may write, for example, every(p.amount < 1000.0).

Below, we’ll meet the ordered set aggregate functions.

 Aggregate functions usually appear in the select clause, but control over aggregation is the responsibility of the
group by clause, as described below.

4.3.3. Aggregate functions and collections

The elements() and indices() functions we met earlier let us apply aggregate functions to a collection:

New syntax Legacy HQL
function Ὀ�

Applies to Purpose

max(elements(x)) maxelement(x) Any collection with sortable elements The maximum element or map value

min(elements(x)) minelement(x) Any collection with sortable elements The minimum element or map value

sum(elements(x)) — Any collection with numeric elements The sum of the elements or map values

avg(elements(x)) — Any collection with numeric elements The average of the elements or map values

max(indices(x)) maxindex(x) Indexed collections (lists and maps) The maximum list index or map key

min(indices(x)) minindex(x) Indexed collections (lists and maps) The minimum list index or map key

sum(indices(x)) — Indexed collections (lists and maps) The sum of the list indexes or map keys

avg(indices(x)) — Indexed collections (lists and maps) The average of the list indexes or map keys

These operations are mostly useful when working with @ElementCollections.

select title, max(indices(authors))+1, max(elements(editions)) from Book

4.3.4. Aggregate functions with restriction

All aggregate functions support the inclusion of a filter clause, a sort of mini-where applying a restriction to just one item of the select
list:

select
 year(item.order.dateTime) as year,
 sum(item.quantity) filter (where not item.order.fulfilled) as unfulfilled,
 sum(item.quantity) filter (where item.order.fulfilled) as fulfilled,
 sum(item.quantity * item.book.price) filter (where item.order.paid)
from Item as item
where item.book.isbn = :isbn
group by year(item.order.dateTime)

The BNF for the filter clause is simple:

filterClause
 : "FILTER" "(" "WHERE" predicate ")"

4.3.5. Ordered set aggregate functions

An ordered set aggregate function is a special aggregate function which has:

• not only an optional filter clause, as above, but also

43

• a within group clause containing a mini-order by specification.

The BNF for within group is straightforward:

withinGroupClause
 : "WITHIN" "GROUP" "(" "ORDER" "BY" sortSpecification ("," sortSpecification)* ")"

There are two main types of ordered set aggregate function:

• an inverse distribution function calculates a value that characterizes the distribution of values within the group, for example,
percentile_cont(0.5) is the median, and percentile_cont(0.25) is the lower quartile.

• a hypothetical set function determines the position of a "hypothetical" value within the ordered set of values.

The following ordered set aggregate functions are available on many platforms:

Type Functions

Inverse distribution functions mode(), percentile_cont(), percentile_disc()

Hypothetical set functions rank(), dense_rank(), percent_rank(), cume_dist()

Other listagg()

This query calculates the median price of a book:

select percentile_cont(0.5)
 within group (order by price)
from Book

This query finds the percentage of books with prices less than 10 dollars:

select 100 * percent_rank(10.0)
 within group (order by price)
from Book

Actually, the most widely-supported ordered set aggregate function is one which builds a string by concatenating the values within
a group. This function has different names on different databases, but HQL abstracts these differences, and—following ANSI
SQL—calls it listagg().

select listagg(title, ', ')
 within group (order by isbn)
from Book
group by element(authors)

This very useful function produces a string by concatenation of the aggregated values of its argument.

4.3.6. Window functions

A window function is one which also has an over clause, for example:

select
 item.order.dateTime,
 sum(item.quantity)
 over (order by item.order.dateTime)
 as runningTotal
from Item item

This query returns a running total of sales over time. That is, the sum() is taken over a window comprising the current row of the
result set, together with all previous rows.

A window function application may optionally specify any of the following clauses:

Optional clause Keyword Purpose

Partitioning of the result set partition by Very similar to group by, but doesn’t collapse each partition to a single row

44

Optional clause Keyword Purpose

Ordering of the partition order by Specifies the order of rows within a partition

Windowing range, rows, or groups Defines the bounds of a window frame within a partition

Restriction filter As aggregate functions, window functions may optionally specify a filter

For example, we may partition the running total by book:

select
 item.book.isbn,
 item.order.dateTime,
 sum(item.quantity)
 over (partition by item.book
 order by item.order.dateTime)
 as runningTotal
from Item item

Every partition runs in isolation, that is, rows can’t leak across partitions.

The full syntax for window function application is amazingly involved, as shown by this BNF:

overClause
 : "OVER" "(" partitionClause? orderByClause? frameClause? ")"

partitionClause
 : "PARTITION" "BY" expression ("," expression)*

frameClause
 : ("RANGE"|"ROWS"|"GROUPS") frameStart frameExclusion?
 | ("RANGE"|"ROWS"|"GROUPS") "BETWEEN" frameStart "AND" frameEnd frameExclusion?

frameStart
 : "CURRENT" "ROW"
 | "UNBOUNDED" "PRECEDING"
 | expression "PRECEDING"
 | expression "FOLLOWING"

frameEnd
 : "CURRENT" "ROW"
 | "UNBOUNDED" "FOLLOWING"
 | expression "PRECEDING"
 | expression "FOLLOWING"

frameExclusion
 : "EXCLUDE" "CURRENT" "ROW"
 | "EXCLUDE" "GROUP"
 | "EXCLUDE" "TIES"
 | "EXCLUDE" "NO" "OTHERS"

Window functions are similar to aggregate functions in the sense that they compute some value based on a "frame" comprising
multiple rows. But unlike aggregate functions, window functions don’t flatten rows within a window frame.

Window frames

The window frame is the set of rows within a given partition that is passed to the window function. There’s a different window frame
for each row of the result set. In our example, the window frame comprised all the preceding rows within the partition, that is, all the
rows with the same item.book and with an earlier item.order.dateTime.

The boundary of the window frame is controlled via the windowing clause, which may specify one of the following modes:

Mode Definition Example Interpretation

rows Frame bounds defined by a given number of rows rows 5 preceding The previous 5 rows in the partition

groups Frame bounds defined by a given number of peer
groups, rows belonging to the same peer group if
they are assigned the same position by order by

groups 5 preceding The rows in the previous 5 peer groups in
the partition

45

Mode Definition Example Interpretation

range Frame bounds defined by a maximum difference in
value of the expression used to order by

range between 1.0
preceding and 1.0
following

The rows whose order by expression
differs by a maximum absolute value of
1.0 from the current row

The frame exclusion clause allows excluding rows around the current row:

Option Interpretation

exclude current row Excludes the current row

exclude group Excludes rows of the peer group of the current row

exclude ties Excludes rows of the peer group of the current row except the current row

exclude no others The default, does not exclude anything

By default, the window frame is defined as rows between unbounded preceding and current row exclude no others, meaning
every row up to and including the current row.

 The modes range and groups, along with frame exclusion modes, are not available on every database.

Widely supported window functions

The following window functions are available on all major platforms:

Window
function

Purpose Signature

row_number() The position of the current row within its frame row_number()

lead() The value of a subsequent row in the frame lead(x), lead(x, i, x)

lag() The value of a previous row in the frame lag(x), lag(x, i, x)

first_value() The value of a first row in the frame first_value(x)

last_value() The value of a last row in the frame last_value(x)

nth_value() The value of the `n`th row in the frame nth_value(x, n)

In principle every aggregate or ordered set aggregate function might also be used as a window function, just by specifying over, but
not every function is supported on every database.

 Window functions and ordered set aggregate functions aren’t available on every database. Even where they are
available, support for particular features varies widely between databases. Therefore, we won’t waste time going
into further detail here. For more information about the syntax and semantics of these functions, consult the
documentation for your dialect of SQL.

4.4. Operations on result sets

These operators apply not to expressions, but to entire result sets:

• union and union all,
• intersect and intersect all, and
• except and except all.

Just like in SQL, all suppresses the elimination of duplicate results.

select nomDePlume from Author where nomDePlume is not null
union
select name from Person

46

4.5. Sorting

By default, the results of the query are returned in an arbitrary order.

 Imposing an order on a set is called sorting.

A relation (a database table) is a set, and therefore certain particularly dogmatic purists have argued that sorting
has no place in the algebra of relations. We think this is more than a bit silly: practical data analysis almost always
involves sorting, which is a perfectly well-defined operation.

The order by clause specifies a list of projected items used to sort the results. Each sorted item may be:

• an attribute of an entity or embeddable class,
• a more complex expression,
• the alias of a projected item declared in the select list, or
• a literal integer indicating the ordinal position of a projected item in the select list.

Of course, in principle, only certain types may be sorted: numeric types, string, and date and time types. But HQL is very permissive
here and will allow an expression of almost any type to occur in a sort list. Even the identification variable of an entity with a
sortable identifier type may occur as a sorted item.

 The JPQL specification requires that every sorted item in the order by clause also occur in the select clause. HQL
does not enforce this restriction, but applications desiring database portability should be aware that some
databases do.

Therefore, you might wish to avoid the use of complex expressions in the sort list.

The BNF for a sorted item is:

sortExpression sortDirection? nullsPrecedence?

sortExpression
 : identifier | INTEGER_LITERAL | expression

sortDirection
 : "ASC" | "DESC"

nullsPrecedence
 : "NULLS" ("FIRST" | "LAST")

Each sorted item listed in the order by clause may explicitly specify a direction, either:

• asc for ascending order, or
• desc for descending order.

If no direction is explicitly specified, the results are returned in ascending order.

Of course, there’s an ambiguity with respect to null values. Therefore, the sorting of null values may be explicitly specified:

Precedence Interpretation

nulls first Puts null values at the beginning of the result set

nulls last Puts them at the end

select title, publisher.name
from Book
order by title, publisher.name nulls last

select book.isbn,
 year(order.dateTime) as year,
 sum(quantity) as yearlyTotalSold,
 sum(quantity * book.price) as yearlyTotalBilled
from Item
where book.isbn = :isbn
group by year(order.dateTime)
having year(order.dateTime) > 2000

47

 and sum(quantity) > 0
order by yearlyTotalSold desc, year desc

Queries with an ordered result list may have limits or pagination.

4.5.1. Limits and offsets

It’s often useful to place a hard upper limit on the number of results that may be returned by a query. The limit and offset clauses
are an alternative to the use of setMaxResults() and setFirstResult() respectively, and may similarly be used for pagination.

 If the limit or offset is parameterized, it’s much easier to use setMaxResults() or setFirstResult().

The SQL fetch syntax is supported as an alternative:

Short form Verbose form Purpose

limit 10 fetch first 10 rows only Limit result set

limit 10 offset 20 offset 20 rows fetch next 10 rows only Paginate result set

The BNF gets a bit complicated:

limitClause
 : "LIMIT" parameterOrIntegerLiteral

offsetClause
 : "OFFSET" parameterOrIntegerLiteral ("ROW" | "ROWS")?

fetchClause
 : "FETCH" ("FIRST" | "NEXT")
 (parameterOrIntegerLiteral | parameterOrNumberLiteral "%")
 ("ROW" | "ROWS")
 ("ONLY" | "WITH" "TIES")

These two queries are identical:

select title from Book
order by title, published desc
limit 50

select title from Book
order by title, published desc
fetch first 50 rows only

These are well-defined limits: the number of results returned by the database will be limited to 50, as promised. But not every query
is quite so well-behaved.

 Limiting certainly isn’t a well-defined relational operation, and must be used with care.

In particular, limits don’t play well with fetch joins.

This next query is accepted by HQL, and no more than 50 results are returned by getResultList(), just as expected:

select title from Book
 join fetch authors
order by title, published desc
limit 50

However, if you log the SQL executed by Hibernate, you’ll notice something wrong:

select
 b1_0.isbn,
 a1_0.books_isbn,
 a1_0.authors_ORDER,
 a1_1.id,
 a1_1.bio,

48

 a1_1.name,
 a1_1.person_id,
 b1_0.price,
 b1_0.published,
 b1_0.publisher_id,
 b1_0.title
from
 Book b1_0
join
 (Book_Author a1_0
 join
 Author a1_1
 on a1_1.id=a1_0.authors_id)
 on b1_0.isbn=a1_0.books_isbn
order by
 b1_0.title,
 b1_0.published desc

What happened to the limit clause?

 When limits or pagination are combined with a fetch join, Hibernate must retrieve all matching results from the
database and apply the limit in memory!

This almost certainly isn’t the behavior you were hoping for, and in general will exhibit terrible performance
characteristics.

4.6. Common table expressions

A common table expression or CTE may be thought of as a sort of named subquery. Any query with an uncorrelated subquery can in
principle be rewritten so that the subquery occurs in the with clause.

But CTEs have capabilities that subqueries don’t have. The with clause lets us:

• specify materialization hints, and
• write recursive queries.

On databases which don’t support CTEs natively, Hibernate attempts to rewrite any HQL query with CTEs as a SQL query with
subqueries. This is impossible for recursive queries, unfortunately.

Let’s take a quick look at the BNF:

withClause
 : "WITH" cte ("," cte)*

cte
 : identifier AS ("NOT"? "MATERIALIZED")? "(" queryExpression ")"
 searchClause? cycleClause?

The with clause comes right at the start of a query. It may declare multiple CTEs with different names.

with
 paid as (
 select ord.id as oid, sum(payment.amount) as amountPaid
 from Order as ord
 left join ord.payments as payment
 group by ord
 having local datetime - ord.dateTime < 365 day
),
 owed as (
 select ord.id as oid, sum(item.quantity*item.book.price) as amountOwed
 from Order as ord
 left join ord.items as item
 group by ord
 having local datetime - ord.dateTime < 365 day
)
select id, paid.amountPaid, owed.amountOwed
from Order
where paid.amountPaid < owed.amountOwed
 and paid.oid = id and owed.oid = id

49

Notice that if we rewrote this query using subqueries, it would look quite a lot clumsier.

4.6.1. Materialization hints

The materialized keyword is a hint to the database that the subquery should be separately executed and its results stored in a
temporary table.

On the other hand, its nemesis, not materialized, is a hint that the subquery should be inlined at each use site, with each usage
optimized independently.

 The precise impact of materialization hints is quite platform-dependant.

Our example query from above hardly changes. We just add materialized to the CTE declarations.

with
 paid as materialized (
 select ord.id as oid, sum(payment.amount) as amountPaid
 from Order as ord
 left join ord.payments as payment
 group by ord
 having local datetime - ord.dateTime < 365 day
),
 owed as materialized (
 select ord.id as oid, sum(item.quantity*item.book.price) as amountOwed
 from Order as ord
 left join ord.items as item
 group by ord
 having local datetime - ord.dateTime < 365 day
)
select id, paid.amountPaid, owed.amountOwed
from Order
where paid.amountPaid < owed.amountOwed
 and paid.oid = id and owed.oid = id

4.6.2. Recursive queries

A recursive query is one where the CTE is defined self-referentially. Recursive queries follow a very particular pattern. The CTE is
defined as a union of:

• a base subquery returning an initial set of rows where the recursion begins,
• a recursively-executed subquery which returns additional rows by joining against the CTE itself.

Let’s demonstrate this with an example.

First we’ll need some sort of tree-like entity:

@Entity
class Node {
 @Id Long id;
 String text;
 @ManyToOne Node parent;
}

We may obtain a tree of Nodes with the following recursive query:

with Tree as (
 /* base query */
 select root.id as id, root.text as text, 0 as level
 from Node root
 where root.parent is null
 union all
 /* recursion */
 select child.id as id, child.text as text, level+1 as level
 from Tree parent
 join Node child on child.parent.id = parent.id
)
select text, level
from Tree

50

When querying a tree-like of data structure, the base subquery usually returns the root node or nodes. The recursively-executed
subquery returns the children of the current set of nodes. It’s executed repeatedly with the results of the previous execution.
Recursion terminates when the recursively-executed subquery returns no new nodes.

 Hibernate cannot emulate recursive queries on databases which don’t support them natively.

Now, if a graph contains cycles, that is, if it isn’t a tree, the recursion might never terminate.

4.6.3. Cycle detection

The cycle clause enables cycle detection, and aborts the recursion if a node is encountered twice.

with Tree as (
 /* base query */
 select root.id as id, root.text as text, 0 as level
 from Node root
 where root.parent is null
 union all
 /* recursion */
 select child.id as id, child.text as text, level+1 as level
 from Tree parent
 join Node child on child.parent.id = parent.id
) cycle id set abort to 'aborted!' default '' /* cycle detection */
select text, level, abort
from Tree
order by level

Here:

• the id column is used to detect cycles, and
• the abort column is set to the string value 'aborted!' if a cycle is detected.

Hibernate emulates the cycle clause on databases which don’t support it natively.

The BNF for cycle is:

cycleClause
 : "CYCLE" identifier ("," identifier)*
 "SET" identifier ("TO" literal "DEFAULT" literal)?
 ("USING" identifier)?

The column optionally specified by using holds the path to the current row.

4.6.4. Ordering depth-first or breadth-first

The search clause allows us to control whether we would like the results of our query returned in an order that emulates a depth-
first recursive search, or a breadth-first recursive search.

In our query above, we explicitly coded a level column that holds the recursion depth, and ordered our result set according to this
depth. With the search clause, that bookkeeping is already taken care of for us.

For depth-first search, we have:

with Tree as (
 /* base query */
 select root.id as id, root.text as text
 from Node root
 where root.parent is null
 union all
 /* recursion */
 select child.id as id, child.text as text
 from Tree parent
 join Node child on child.parent.id = parent.id
) search depth first by id set level /* depth-first search */
from Tree
select text
order by level

And for breadth-first search, we only need to change a single keyword:

51

with Tree as (
 /* base query */
 select root.id as id, root.text as text
 from Node root
 where root.parent is null
 union all
 /* recursion */
 select child.id as id, child.text as text
 from Tree parent
 join Node child on child.parent.id = parent.id
) search breadth first by id set level /* breadth-first search */
from Tree
select text
order by level desc

Hibernate emulates the search clause on databases which don’t support it natively.

The BNF for search is:

searchClause
 : "SEARCH" ("BREADTH"|"DEPTH") "FIRST"
 "BY" searchSpecifications
 "SET" identifier

searchSpecifications
 : searchSpecification ("," searchSpecification)*

searchSpecification
 : identifier sortDirection? nullsPrecedence?

52

Chapter 5. Credits

The full list of contributors to Hibernate ORM can be found on the GitHub repository.

The following contributors were involved in this documentation:

• Gavin King

53

https://github.com/hibernate/hibernate-orm/graphs/contributors

	A Guide to Hibernate Query Language
	Table of Contents
	Preface
	Chapter 1. Basic concepts
	1.1. HQL and SQL
	1.2. Lexical structure
	1.2.1. Identifiers and case sensitivity
	1.2.2. Comments
	1.2.3. Parameters
	1.2.4. Literals

	1.3. Syntax
	1.4. Type system
	1.4.1. Null values and ternary logic

	1.5. Statement types
	1.5.1. Update statements
	1.5.2. Delete statements
	1.5.3. Insert statements
	1.5.4. Select statements

	1.6. Representing result sets in Java
	1.6.1. Queries with a single projected item
	1.6.2. Queries with multiple projected items
	1.6.3. Instantiation

	Chapter 2. Expressions
	2.1. Literals
	2.1.1. Boolean literals
	2.1.2. String literals
	2.1.3. Numeric literals
	2.1.4. Date and time literals
	2.1.5. Duration literals
	2.1.6. Binary string literals
	2.1.7. Enum literals
	2.1.8. Java constants
	2.1.9. Literal entity names

	2.2. Identification variables and path expressions
	2.3. Operator expressions
	2.3.1. String concatenation
	2.3.2. Numeric arithmetic
	2.3.3. Datetime arithmetic

	2.4. Case expressions
	2.5. Tuples
	2.6. Functions
	2.6.1. Types and typecasts
	2.6.2. Functions for working with null values
	2.6.3. Functions for working with dates and times
	2.6.4. Functions for working with strings
	2.6.5. Numeric functions
	2.6.6. Functions for dealing with collections
	2.6.7. Functions for working with ids and versions
	2.6.8. Embedding SQL expressions

	2.7. Predicates
	2.7.1. Comparison operators
	2.7.2. The between predicate
	2.7.3. Operators for dealing with null
	2.7.4. Operators for dealing with boolean values
	2.7.5. Collection predicates
	2.7.6. String pattern matching
	2.7.7. The in predicate
	2.7.8. Comparison operators and subqueries
	2.7.9. The exists predicate
	2.7.10. Logical operators

	Chapter 3. Root entities and joins
	3.1. Declaring root entities
	3.1.1. Identification variables
	3.1.2. Root entity references
	3.1.3. Polymorphism
	3.1.4. Derived roots
	3.1.5. Common table expressions in from clause

	3.2. Declaring joined entities
	3.2.1. Explicit root joins
	3.2.2. Explicit association joins
	3.2.3. Explicit association joins with join conditions
	3.2.4. Association fetching
	3.2.5. Joins with typecasts
	3.2.6. Subqueries in joins
	3.2.7. Implicit association joins (path expressions)
	3.2.8. Joining collections and many-valued associations
	3.2.9. Implicit joins involving collections

	Chapter 4. Selection, projection, and aggregation
	4.1. Restriction
	4.2. Aggregation
	4.2.1. Aggregation and grouping
	4.2.2. Totals and subtotals
	4.2.3. Aggregation and restriction

	4.3. Projection
	4.3.1. Duplicate removal
	4.3.2. Aggregate functions
	4.3.3. Aggregate functions and collections
	4.3.4. Aggregate functions with restriction
	4.3.5. Ordered set aggregate functions
	4.3.6. Window functions

	4.4. Operations on result sets
	4.5. Sorting
	4.5.1. Limits and offsets

	4.6. Common table expressions
	4.6.1. Materialization hints
	4.6.2. Recursive queries
	4.6.3. Cycle detection
	4.6.4. Ordering depth-first or breadth-first

	Chapter 5. Credits

