
An Introduction to Hibernate 6
Version 6.2.48.Final

Table of Contents

Preface . 1
1. Introduction . 2

1.1. Hibernate and JPA . 2
1.2. Writing Java code with Hibernate. 4
1.3. Hello, Hibernate . 4
1.4. Hello, JPA . 6
1.5. Organizing persistence logic . 8
1.6. Testing persistence logic . 9
1.7. Architecture and the persistence layer . 11
1.8. Overview. 12

2. Configuration and bootstrap . 13
2.1. Including Hibernate in your project build. 13
2.2. Optional dependencies. 14
2.3. Configuration using JPA XML. 14
2.4. Configuration using Hibernate API. 15
2.5. Configuration using Hibernate properties file . 16
2.6. Basic configuration settings . 16
2.7. Automatic schema export . 17
2.8. Logging the generated SQL . 17
2.9. Minimizing repetitive mapping information . 18
2.10. Nationalized character data in SQL Server . 18

3. Entities. 20
3.1. Entity classes. 20
3.2. Access types. 21
3.3. Entity class inheritance. 21
3.4. Identifier attributes . 22
3.5. Generated identifiers. 22
3.6. Natural keys as identifiers . 23
3.7. Composite identifiers . 24
3.8. Version attributes. 25
3.9. Natural id attributes . 25
3.10. Basic attributes. 26
3.11. Enumerated types . 27
3.12. Converters . 28
3.13. Compositional basic types. 29
3.14. Embeddable objects . 30
3.15. Associations. 31
3.16. Many-to-one . 32
3.17. One-to-one (first way) . 33
3.18. One-to-one (second way) . 34
3.19. Many-to-many. 35
3.20. Collections of basic values and embeddable objects . 36
3.21. Collections mapped to SQL arrays. 37
3.22. Collections mapped to a separate table . 37
3.23. Summary of annotations . 38
3.24. equals() and hashCode() . 39

4. Object/relational mapping . 41
4.1. Mapping entity inheritance hierarchies . 41
4.2. Mapping to tables. 43
4.3. Mapping entities to tables . 43
4.4. Mapping associations to tables. 44
4.5. Mapping to columns . 45
4.6. Mapping basic attributes to columns . 45
4.7. Mapping associations to foreign key columns. 46
4.8. Mapping primary key joins between tables . 48
4.9. Column lengths and adaptive column types . 49
4.10. LOBs . 49
4.11. Mapping embeddable types to UDTs or to JSON . 50
4.12. Summary of SQL column type mappings . 51
4.13. Mapping to formulas . 52

5. Interacting with the database . 53
5.1. Persistence Contexts . 53
5.2. Creating a session . 54
5.3. Managing transactions . 55
5.4. Operations on the persistence context . 55
5.5. Cascading persistence operations . 56
5.6. Proxies and lazy fetching . 56
5.7. Entity graphs and eager fetching . 58
5.8. Flushing the session. 58
5.9. Queries . 59
5.10. HQL queries . 59
5.11. Criteria queries . 60
5.12. Native SQL queries. 62
5.13. Limits, pagination, and ordering . 63
5.14. Representing projection lists. 63
5.15. Named queries . 64
5.16. Controlling lookup by id . 65
5.17. Interacting directly with JDBC . 66
5.18. What to do when things go wrong . 66

6. Tuning and performance. 68
6.1. Tuning the connection pool. 68
6.2. Enabling statement batching . 69
6.3. Association fetching . 69
6.4. Batch fetching and subselect fetching . 70
6.5. Join fetching . 71
6.6. The second-level cache. 72
6.7. Specifying which data is cached . 73
6.8. Caching by natural id. 74
6.9. Caching and association fetching. 75
6.10. Configuring the second-level cache provider . 75
6.11. Caching query result sets . 76
6.12. Second-level cache management . 77
6.13. Session cache management . 78
6.14. Stateless sessions . 78
6.15. Optimistic and pessimistic locking . 79
6.16. Collecting statistics . 80
6.17. Tracking down slow queries . 80
6.18. Reactive programming with Hibernate. 81

7. Advanced Topics . 82
7.1. Filters . 82
7.2. Multi-tenancy . 84
7.3. Using custom-written SQL . 85
7.4. Handling database-generated columns . 85
7.5. User-defined generators. 86
7.6. Naming strategies . 87
7.7. Spatial datatypes . 88
7.8. Ordered and sorted collections and map keys . 89
7.9. Any mappings . 90
7.10. Selective column lists in inserts and updates . 91
7.11. Using the bytecode enhancer . 92
7.12. Named fetch profiles . 93

Preface

Hibernate 6 is a major redesign of the world’s most popular and feature-rich ORM solution. The redesign has touched almost every
subsystem of Hibernate, including the APIs, mapping annotations, and the query language. This new Hibernate is more powerful,
more robust, and more typesafe.

With so many improvements, it’s very difficult to summarize the significance of this work. But the following general themes stand
out. Hibernate 6:

• finally takes advantage of the advances in relational databases over the past decade, updating the query language to support a
raft of new constructs in modern dialects of SQL,

• exhibits much more consistent behavior across different databases, greatly improving portability, and generates much higher-
quality DDL from dialect-independent code,

• improves error reporting by more scrupulous validation of queries before access to the database,
• improves the type-safety of O/R mapping annotations, clarifies the separation of API, SPI, and internal implementation, and fixes

some long-standing architectural flaws,
• removes or deprecates legacy APIs, laying the foundation for future evolution, and
• makes far better use of Javadoc, putting much more information at the fingertips of developers.

Hibernate 6 and Hibernate Reactive are now core components of Quarkus 3, the most exciting new environment for cloud-native
development in Java, and Hibernate remains the persistence solution of choice for almost every major Java framework or server.

Unfortunately, the changes in Hibernate 6 have obsoleted much of the information about Hibernate that’s available in books, in
blog posts, and on stackoverflow.

This guide is an up-to-date, high-level discussion of the current set of Hibernate features. It does not attempt to cover every feature
and should be used in conjunction with other documentation -

• Hibernate’s extensive Javadoc
• The Hibernate Query Language Guide
• The Hibernate User Guide.

 The Hibernate User Guide provides detailed discussion about most aspects of Hibernate. But with so much
information to cover, readability is difficult to achieve - it should be considered more of a reference guide.

Where applicable, this guide will provide links to detailed User Guide content within its covered topics.

1

https://docs.jboss.org/hibernate/orm/6.2/javadocs/
https://docs.jboss.org/hibernate/orm/6.2/querylanguage/html_single/Hibernate_Query_Language.html
https://docs.jboss.org/hibernate/orm/6.2/userguide/html_single/Hibernate_User_Guide.html

Chapter 1. Introduction

Hibernate is usually described as a library that makes it easy to map Java classes to relational database tables. But this formulation
does no justice to the central role played by the relational data itself. So a better description might be:

Hibernate makes relational data visible to a program written in Java, in a natural and typesafe form,

1. making it easy to write complex queries and work with their results,
2. letting the program easily synchronize changes made in memory with the database, respecting the ACID properties of

transactions, and
3. allowing performance optimizations to be made after the basic persistence logic has already been written.

Here the relational data is the focus, along with the importance of typesafety. The goal of Object/relational mapping (ORM) is to
eliminate fragile and untypesafe code, and make large programs easier to maintain in the long run.

ORM takes the pain out of persistence by relieving the developer of the need to hand-write tedious, repetitive, and fragile code for
flattening graphs of objects to database tables and rebuilding graphs of objects from flat SQL query result sets. Even better, ORM
makes it much easier to tune performance later, after the basic persistence logic has already been written.

 A perennial question is: should I use ORM, or plain SQL? The answer is usually: use both. JPA and Hibernate were
designed to work in conjunction with handwritten SQL. You see, most programs with nontrivial data access logic
will benefit from the use of ORM at least somewhere. But if Hibernate is making things more difficult, for some
particularly tricky piece of data access logic, the only sensible thing to do is to use something better suited to the
problem! Just because you’re using Hibernate for persistence doesn’t mean you have to use it for everything.

Developers often ask about the relationship between Hibernate and JPA, so let’s take a short detour into some history.

1.1. Hibernate and JPA

Hibernate was the inspiration behind the Java (now Jakarta) Persistence API, or JPA, and includes a complete implementation of the
latest revision of this specification.

The early history of Hibernate and JPA

The Hibernate project began in 2001, when Gavin King’s frustration with Entity Beans in EJB 2 boiled over. It quickly overtook
other open source and commercial contenders to become the most popular persistence solution for Java, and the book
Hibernate in Action, written with Christian Bauer, was an influential bestseller.

In 2004, Gavin and Christian joined a tiny startup called JBoss, and other early Hibernate contributors soon followed: Max
Rydahl Andersen, Emmanuel Bernard, Steve Ebersole, and Sanne Grinovero.

Soon after, Gavin joined the EJB 3 expert group and convinced the group to deprecate Entity Beans in favor of a brand-new
persistence API modelled after Hibernate. Later, members of the TopLink team got involved, and the Java Persistence API
evolved as a collaboration between—primarily—Sun, JBoss, Oracle, and Sybase, under the leadership of Linda Demichiel.

Over the intervening two decades, many talented people have contributed to the development of Hibernate. We’re all
especially grateful to Steve, who has led the project for many years, since Gavin stepped back to focus in other work.

We can think of the API of Hibernate in terms of three basic elements:

• an implementation of the JPA-defined APIs, most importantly, of the interfaces EntityManagerFactory and EntityManager, and
of the JPA-defined O/R mapping annotations,

• a native API exposing the full set of available functionality, centered around the interfaces SessionFactory, which extends
EntityManagerFactory, and Session, which extends EntityManager, and

• a set of mapping annotations which augment the O/R mapping annotations defined by JPA, and which may be used with the
JPA-defined interfaces, or with the native API.

Hibernate also offers a range of SPIs for frameworks and libraries which extend or integrate with Hibernate, but we’re not interested
in any of that stuff here.

2

As an application developer, you must decide whether to:

• write your program in terms of Session and SessionFactory, or
• maximize portability to other implementations of JPA by, wherever reasonable, writing code in terms of EntityManager and
EntityManagerFactory, falling back to the native APIs only where necessary.

Whichever path you take, you will use the JPA-defined mapping annotations most of the time, and the Hibernate-defined
annotations for more advanced mapping problems.

 You might wonder if it’s possible to develop an application using only JPA-defined APIs, and, indeed, that’s
possible in principle. JPA is a great baseline that really nails the basics of the object/relational mapping problem.
But without the native APIs, and extended mapping annotations, you miss out on much of the power of Hibernate.

Since Hibernate existed before JPA, and since JPA was modelled on Hibernate, we unfortunately have some competition and
duplication in naming between the standard and native APIs. For example:

Table 1. Examples of competing APIs with similar naming

Hibernate JPA

org.hibernate.annotations.CascadeType javax.persistence.CascadeType

org.hibernate.FlushMode javax.persistence.FlushModeType

org.hibernate.annotations.FetchMode javax.persistence.FetchType

org.hibernate.query.Query javax.persistence.Query

org.hibernate.Cache javax.persistence.Cache

@org.hibernate.annotations.NamedQuery @javax.persistence.NamedQuery

@org.hibernate.annotations.Cache @javax.persistence.Cacheable

Typically, the Hibernate-native APIs offer something a little extra that’s missing in JPA, so this isn’t exactly a flaw. But it’s something
to watch out for.

3

1.2. Writing Java code with Hibernate

If you’re completely new to Hibernate and JPA, you might already be wondering how the persistence-related code is structured.

Well, typically, our persistence-related code comes in two layers:

1. a representation of our data model in Java, which takes the form of a set of annotated entity classes, and
2. a larger number of functions which interact with Hibernate’s APIs to perform the persistence operations associated with your

various transactions.

The first part, the data or "domain" model, is usually easier to write, but doing a great and very clean job of it will strongly affect
your success in the second part.

Most people implement the domain model as a set of what we used to call "Plain Old Java Objects", that is, as simple Java classes
with no direct dependencies on technical infrastructure, nor on application logic which deals with request processing, transaction
management, communications, or interaction with the database.

 Take your time with this code, and try to produce a Java model that’s as close as reasonable to the relational data
model. Avoid using exotic or advanced mapping features when they’re not really needed. When in the slightest
doubt, map a foreign key relationship using @ManyToOne with @OneToMany(mappedBy=…) in preference to more
complicated association mappings.

The second part of the code is much trickier to get right. This code must:

• manage transactions and sessions,
• interact with the database via the Hibernate session,
• fetch and prepare data needed by the UI, and
• handle failures.

 Responsibility for transaction and session management, and for recovery from certain kinds of failure, is best
handled in some sort of framework code.

We’re going to come back soon to the thorny question of how this persistence logic should be organized, and how it should fit into
the rest of the system.

1.3. Hello, Hibernate

Before we get deeper into the weeds, we’ll quickly present a basic example program that will help you get started if you don’t
already have Hibernate integrated into your project.

We begin with a simple gradle build file:

build.gradle

plugins {
 id 'java'
}

group = 'org.example'
version = '1.0-SNAPSHOT'

repositories {
 mavenCentral()
}

dependencies {
 // the GOAT ORM
 implementation 'org.hibernate.orm:hibernate-core:6.2.2.Final'

 // Hibernate Validator
 implementation 'org.hibernate.validator:hibernate-validator:8.0.0.Final'
 implementation 'org.glassfish:jakarta.el:4.0.2'

 // Agroal connection pool
 implementation 'org.hibernate.orm:hibernate-agroal:6.2.2.Final'
 implementation 'io.agroal:agroal-pool:2.1'

 // logging via Log4j
 implementation 'org.apache.logging.log4j:log4j-core:2.20.0'

4

 // JPA Metamodel Generator
 annotationProcessor 'org.hibernate.orm:hibernate-jpamodelgen:6.2.2.Final'

 // Compile-time checking for HQL
 //implementation 'org.hibernate:query-validator:2.0-SNAPSHOT'
 //annotationProcessor 'org.hibernate:query-validator:2.0-SNAPSHOT'

 // H2 database
 runtimeOnly 'com.h2database:h2:2.1.214'
}

Only the first of these dependencies is absolutely required to run Hibernate.

Next, we’ll add a logging configuration file for log4j:

log4j2.properties

rootLogger.level = info
rootLogger.appenderRefs = console
rootLogger.appenderRef.console.ref = console

logger.hibernate.name = org.hibernate.SQL
logger.hibernate.level = info

appender.console.name = console
appender.console.type = Console
appender.console.layout.type = PatternLayout
appender.console.layout.pattern = %highlight{[%p]} %m%n

Now we need some Java code. We begin with our entity class:

Book.java

package org.hibernate.example;

import jakarta.persistence.Entity;
import jakarta.persistence.Id;
import jakarta.validation.constraints.NotNull;

@Entity
class Book {
 @Id
 String isbn;

 @NotNull
 String title;

 Book() {}

 Book(String isbn, String title) {
 this.isbn = isbn;
 this.title = title;
 }
}

Finally, let’s see code which configures and instantiates Hibernate and asks it to persist and query the entity. Don’t worry if this
makes no sense at all right now. It’s the job of this Introduction to make all this crystal clear.

Main.java

package org.hibernate.example;

import org.hibernate.cfg.Configuration;

import static java.lang.Boolean.TRUE;
import static java.lang.System.out;
import static org.hibernate.cfg.AvailableSettings.*;

public class Main {
 public static void main(String[] args) {
 var sessionFactory = new Configuration()
 .addAnnotatedClass(Book.class)
 // use H2 in-memory database

5

 .setProperty(URL, "jdbc:h2:mem:db1")
 .setProperty(USER, "sa")
 .setProperty(PASS, "")
 // use Agroal connection pool
 .setProperty("hibernate.agroal.maxSize", "20")
 // display SQL in console
 .setProperty(SHOW_SQL, TRUE.toString())
 .setProperty(FORMAT_SQL, TRUE.toString())
 .setProperty(HIGHLIGHT_SQL, TRUE.toString())
 .buildSessionFactory();

 // export the inferred database schema
 sessionFactory.getSchemaManager().exportMappedObjects(true);

 // persist an entity
 sessionFactory.inTransaction(session -> {
 session.persist(new Book("9781932394153", "Hibernate in Action"));
 });

 // query data using HQL
 sessionFactory.inSession(session -> {
 out.println(session.createSelectionQuery("select isbn||': '||title from Book").getSingleResult());
 });

 // query data using criteria API
 sessionFactory.inSession(session -> {
 var builder = sessionFactory.getCriteriaBuilder();
 var query = builder.createQuery(String.class);
 var book = query.from(Book.class);
 query.select(builder.concat(builder.concat(book.get(Book_.isbn), builder.literal(": ")),
 book.get(Book_.title)));
 out.println(session.createSelectionQuery(query).getSingleResult());
 });
 }
}

Here we’ve used Hibernate’s native APIs. We could have used JPA-standard APIs to achieve the same thing.

1.4. Hello, JPA

If we limit ourselves to the use of JPA-standard APIs, we need to use XML to configure Hibernate.

META-INF/persistence.xml

<persistence xmlns="https://jakarta.ee/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://jakarta.ee/xml/ns/persistence
https://jakarta.ee/xml/ns/persistence/persistence_3_0.xsd"
 version="3.0">

 <persistence-unit name="example">

 <class>org.hibernate.example.Book</class>

 <properties>

 <!-- H2 in-memory database -->
 <property name="jakarta.persistence.jdbc.url"
 value="jdbc:h2:mem:db1"/>

 <!-- Credentials -->
 <property name="jakarta.persistence.jdbc.user"
 value="sa"/>
 <property name="jakarta.persistence.jdbc.password"
 value=""/>

 <!-- Agroal connection pool -->
 <property name="hibernate.agroal.maxSize"
 value="20"/>

 <!-- display SQL in console -->
 <property name="hibernate.show_sql" value="true"/>

6

 <property name="hibernate.format_sql" value="true"/>
 <property name="hibernate.highlight_sql" value="true"/>

 </properties>

 </persistence-unit>
</persistence>

Note that our build.gradle and log4j2.properties files are unchanged.

Our entity class is also unchanged from what we had before.

Unfortunately, JPA doesn’t offer an inSession() method, so we’ll have to implement session and transaction management
ourselves. We can put that logic in our own inSession() function, so that we don’t have to repeat it for every transaction. Again, you
don’t need to understand any of this code right now.

Main.java (JPA version)

package org.hibernate.example;

import jakarta.persistence.EntityManager;
import jakarta.persistence.EntityManagerFactory;

import java.util.Map;
import java.util.function.Consumer;

import static jakarta.persistence.Persistence.createEntityManagerFactory;
import static java.lang.System.out;
import static org.hibernate.cfg.AvailableSettings.JAKARTA_HBM2DDL_DATABASE_ACTION;
import static org.hibernate.tool.schema.Action.CREATE;

public class Main {
 public static void main(String[] args) {
 var factory = createEntityManagerFactory("example",
 // export the inferred database schema
 Map.of(JAKARTA_HBM2DDL_DATABASE_ACTION, CREATE));

 // persist an entity
 inSession(factory, entityManager -> {
 entityManager.persist(new Book("9781932394153", "Hibernate in Action"));
 });

 // query data using HQL
 inSession(factory, entityManager -> {
 out.println(entityManager.createQuery("select isbn||': '||title from Book").getSingleResult());
 });

 // query data using criteria API
 inSession(factory, entityManager -> {
 var builder = factory.getCriteriaBuilder();
 var query = builder.createQuery(String.class);
 var book = query.from(Book.class);
 query.select(builder.concat(builder.concat(book.get(Book_.isbn), builder.literal(": ")),
 book.get(Book_.title)));
 out.println(entityManager.createQuery(query).getSingleResult());
 });
 }

 // do some work in a session, performing correct transaction management
 static void inSession(EntityManagerFactory factory, Consumer<EntityManager> work) {
 var entityManager = factory.createEntityManager();
 var transaction = entityManager.getTransaction();
 try {
 transaction.begin();
 work.accept(entityManager);
 transaction.commit();
 }
 catch (Exception e) {
 if (transaction.isActive()) transaction.rollback();
 throw e;
 }
 finally {
 entityManager.close();

7

 }
 }
}

In practice, we never access the database directly from a main() method. So now let’s talk about how to organize persistence logic
in a real system. The rest of this chapter is not compulsory. If you’re itching for more details about Hibernate itself, you’re quite
welcome to skip straight to the next chapter, and come back later.

1.5. Organizing persistence logic

In a real program, persistence logic like the code shown above is usually interleaved with other sorts of code, including logic:

• implementing the rules of the business domain, or
• for interacting with the user.

Therefore, many developers quickly—even too quickly, in our opinion—reach for ways to isolate the persistence logic into some sort
of separate architectural layer. We’re going to ask you to suppress this urge for now.

 The easiest way to use Hibernate is to call the Session or EntityManager directly. If you’re new to Hibernate,
frameworks which wrap JPA are only going to make your life more difficult.

We prefer a bottom-up approach to organizing our code. We like to start thinking about methods and functions, not about
architectural layers and container-managed objects. To illustrate the sort of approach to code organization that we advocate, let’s
consider a service which queries the database using HQL or SQL.

We might start with something like this, a mix of UI and persistence logic:

@Path("/") @Produces("application/json")
public class BookResource {
 @GET @Path("book/{isbn}")
 public Book getBook(String isbn) {
 var book = sessionFactory.fromTransaction(session -> session.find(Book.class, isbn));
 return book == null ? Response.status(404).build() : book;
 }
}

Indeed, we might also finish with something like that—it’s quite hard to identify anything concretely wrong with the code above, and
for such a simple case it seems really difficult to justify making this code more complicated by introducing additional objects.

One very nice aspect of this code, which we wish to draw your attention to, is that session and transaction management is handled
by generic "framework" code, just as we already recommended above. In this case, we’re using the fromTransaction() method,
which happens to come built in to Hibernate. But you might prefer to use something else, for example:

• in a container environment like Jakarta EE or Quarkus, container-managed transactions and container-managed persistence
contexts, or

• something you write yourself.

The important thing is that calls like createEntityManager() and getTransaction().begin() don’t belong in regular program logic,
because it’s tricky and tedious to get the error handling correct.

Let’s now consider a slightly more complicated case.

@Path("/") @Produces("application/json")
public class BookResource {
 private static final RESULTS_PER_PAGE = 20;

 @GET @Path("books/{titlePattern}/{page:\\d+}")
 public List<Book> findBooks(String titlePattern, int page) {
 var books = sessionFactory.fromTransaction(session -> {
 return entityManager.createQuery("from Book where title like ?1 order by title", Book.class)
 .setParameter(1, titlePattern)
 .setMaxResults(RESULTS_PER_PAGE) // return at most 20 results
 .setFirstResult(page*RESULTS_PER_PAGE) // start from the given page of results
 .getResultList();
 });
 return books.isEmpty() ? Response.status(404).build() : books;
 }

}

8

This is fine, and we won’t complain if you prefer to leave the code exactly as it appears above. But there’s one thing we could
perhaps improve. We love super-short methods with single responsibilities, and there looks to be an opportunity to introduce one
here. Let’s hit the code with our favorite thing, the Extract Method refactoring. We obtain:

static List<Book> findBooksByTitleWithPagination(EntityManager entityManager,
 String titlePattern, int max, int start) {
 return entityManager.createQuery("from Book where title like ?1 order by title", Book.class)
 .setParameter(1, titlePattern)
 .setMaxResults(max)
 .setFirstResult(start)
 .getResultList();
}

This is an example of a query method, a function which accepts arguments to the parameters of a HQL or SQL query, and executes
the query, returning its results to the caller. And that’s all it does; it doesn’t orchestrate additional program logic, and it doesn’t
perform transaction or session management.

It’s even better to specify the query string using the @NamedQuery annotation, so that Hibernate can validate the query it at startup
time, that is, when the SessionFactory is created, instead of when the query is first executed.

We need a place to put the annotation, so lets move our query method to a new class:

@NamedQuery(name="findBooksByTitle",
 query="from Book where title like :title order by title")
class Queries {

 static List<Book> findBooksByTitleWithPagination(EntityManager entityManager,
 String titlePattern, int max, int start) {
 return entityManager.createNamedQuery("findBooksByTitle", Book.class)
 .setParameter("title", titlePattern)
 .setMaxResults(max)
 .setFirstResult(start)
 .getResultList();
 }
}

Notice that our query method doesn’t attempt to hide the EntityManager from its clients. Indeed, the client code is responsible for
providing the EntityManager or Session to the query method. This is a quite distinctive feature of our whole approach.

The client code may:

• obtain an EntityManager or Session by calling inTransaction() or fromTransaction(), as we saw above, or,
• in an environment with container-managed transactions, it might obtain it via dependency injection.

Whatever the case, the code which orchestrates a unit of work usually just calls the Session or EntityManager directly, passing it
along to helper methods like our query method if necessary.

@GET
@Path("books/{titlePattern}")
public List<Book> findBooks(String titlePattern) {
 var books = sessionFactory.fromTransaction(session ->
 Queries.findBooksByTitleWithPagination(session, titlePattern,
 RESULTS_PER_PAGE, RESULTS_PER_PAGE*page));
 return books.isEmpty() ? Response.status(404).build() : books;
}

You might be thinking that our query method looks a bit boilerplatey. That’s true, perhaps, but we’re much more concerned that it’s
not very typesafe. Indeed, for many years, the lack of compile-time checking for HQL queries and code which binds arguments to
query parameters was our number one source of discomfort with Hibernate.

Fortunately, there’s now a solution to both problems: as an incubating feature of Hibernate 6.3, we now offer the possibility to have
the Metamodel Generator fill in the implementation of such query methods for you.

Now that we have a rough picture of what our persistence logic might look like, it’s natural to ask how we should test this code.

1.6. Testing persistence logic

When we write tests for our persistence logic, we’re going to need:

1. a database, with

9

2. an instance of the schema mapped by our persistent entities, and
3. a set of test data, in a well-defined state at the beginning of each test.

It might seem obvious that we should test against the same database system that we’re going to use in production, and, indeed, we
should certainly have at least some tests for this configuration. But on the other hand, tests which perform I/O are much slower than
tests which don’t, and most databases can’t be set up to run in-process.

So, since most persistence logic written using Hibernate 6 is extremely portable between databases, it often makes good sense to
test against an in-memory Java database. (H2 is the one we recommend.)

 We do need to be careful here if our persistence code uses native SQL, or if it uses concurrency-management
features like pessimistic locks.

Whether we’re testing against our real database, or against an in-memory Java database, we’ll need to export the schema at the
beginning of a test suite. We usually do this when we create the Hibernate SessionFactory or JPA EntityManager, and so
traditionally we’ve used a configuration property for this.

The JPA-standard property is jakarta.persistence.schema-generation.database.action. For example, if we’re using
Configuration to configure Hibernate, we could write:

configuration.setProperty(AvailableSettings.JAKARTA_HBM2DDL_DATABASE_ACTION,
 Action.SPEC_ACTION_DROP_AND_CREATE);

Alternatively, in Hibernate 6, we may use the new SchemaManager API to export the schema, just as we did above.

sessionFactory.getSchemaManager().exportMappedObjects(true);

Since executing DDL statements is very slow on many databases, we don’t want to do this before every test. Instead, to ensure that
each test begins with the test data in a well-defined state, we need to do two things before each test:

1. clean up any mess left behind by the previous test, and then
2. reinitialize the test data.

We may truncate all the tables, leaving an empty database schema, using the SchemaManager.

sessionFactory.getSchemaManager().truncateMappedObjects();

After truncating tables, we might need to initialize our test data. We may specify test data in a SQL script, for example:

/import.sql

insert into Books (isbn, title) values ('9781932394153', 'Hibernate in Action')
insert into Books (isbn, title) values ('9781932394887', 'Java Persistence with Hibernate')
insert into Books (isbn, title) values ('9781617290459', 'Java Persistence with Hibernate, Second Edition')

If we name this file import.sql, and place it in the root classpath, that’s all we need to do.

Otherwise, we need to specify the file in the configuration property jakarta.persistence.schema-generation.create-script-
source.

This SQL script will be executed every time exportMappedObjects() or truncateMappedObjects() is called.

 Another important test we’ll need is one which validates our O/R mapping annotations against the actual
database schema. This is again the job of the schema management tooling, either:

configuration.setProperty(AvailableSettings.JAKARTA_HBM2DDL_DATABASE_ACTION,
 Action.ACTION_VALIDATE);

Or:

sessionFactory.getSchemaManager().validateMappedObjects();

This "test" is one which many people like to run even in production, when the system starts up.

10

http://www.h2database.com

1.7. Architecture and the persistence layer

Let’s now consider a different approach to code organization, one we treat with suspicion.

 In this section, we’re going to give you our opinion. If you’re only interested in facts, or if you prefer not to read
things that might undermine the opinion you currently hold, please feel free to skip straight to the next chapter.

Hibernate is an architecture-agnostic library, not a framework, and therefore integrates comfortably with a wide range of Java
frameworks and containers. Consistent with our place within the ecosystem, we’ve historically avoided giving out much advice on
architecture. This is a practice we’re now perhaps inclined to regret, since the resulting vacuum has come to be filled with advice
from people advocating architectures, design patterns, and extra frameworks which we suspect make Hibernate a bit less pleasant
to use than it should be.

In particular, frameworks which wrap JPA seem to add bloat while subtracting some of the fine-grained control over data access
that Hibernate works so hard to provide. These frameworks don’t expose the full feature set of Hibernate, and so the program is
forced to work with a less powerful abstraction.

The stodgy, dogmatic, conventional wisdom, which we hesitate to challenge for simple fear of pricking ourselves on the erect
hackles that inevitably accompany such dogma-baiting is:

Code which interacts with the database belongs in a separate persistence layer.

We lack the courage—perhaps even the conviction—to tell you categorically to not follow this recommendation. But we do ask you
to consider the cost in boilerplate of any architectural layer, and whether the benefits this cost buys are really worth it in the context
of your system.

To add a little background texture to this discussion, and at the risk of our Introduction degenerating into a rant at such an early
stage, we’re going ask you to humor us while talk a little more about ancient history.

An epic tale of DAOs and Repositories

Back in the dark days of Java EE 4, before the standardization of Hibernate, and subsequent ascendance of JPA in Java
enterprise development, it was common to hand-code the messy JDBC interactions that Hibernate takes care of today. In
those terrible times, a pattern arose that we used to call Data Access Objects (DAOs). A DAO gave you a place to put all that
nasty JDBC code, leaving the important program logic cleaner.

When Hibernate arrived suddenly on the scene in 2001, developers loved it. But Hibernate implemented no specification, and
many wished to reduce or at least localize the dependence of their project logic on Hibernate. An obvious solution was to
keep the DAOs around, but to replace the JDBC code inside them with calls to the Hibernate Session.

We partly blame ourselves for what happened next.

Back in 2002 and 2003 this really seemed like a pretty reasonable thing to do. In fact, we contributed to the popularity of this
approach by recommending—or at least not discouraging—the use of DAOs in Hibernate in Action. We hereby apologize for
this mistake, and for taking much too long to recognize it.

Eventually, some folks came to believe that their DAOs shielded their program from depending in a hard way on ORM,
allowing them to "swap out" Hibernate, and replace it with JDBC, or with something else. In fact, this was never really
true—there’s quite a deep difference between the programming model of JDBC, where every interaction with the database is
explicit and synchronous, and the programming model of stateful sessions in Hibernate, where updates are implicit, and SQL
statements are executed asynchronously.

But then the whole landscape for persistence in Java changed in April 2006, when the final draft of JPA 1.0 was approved.
Java now had a standard way to do ORM, with multiple high-quality implementations of the standard API. This was the end of
the line for the DAOs, right?

Well, no. It wasn’t. DAOs were rebranded "repositories", and continue to enjoy a sort-of zombie afterlife as a front-end to JPA.
But are they really pulling their weight, or are they just unnecessary extra complexity and bloat? An extra layer of indirection
that makes stack traces harder to read and code harder to debug?

Our considered view is that they’re mostly just bloat. The JPA EntityManager is a "repository", and it’s a standard repository
with a well-defined specification written by people who spend all day thinking about persistence. If these repository
frameworks offered anything actually useful—and not obviously foot-shooty—over and above what EntityManager provides,
we would have already added it to EntityManager decades ago.

Ultimately, we’re not sure you need a separate persistence layer at all. At least consider the possibility that it might be OK to call the
EntityManager directly from your business logic.

11

We can already hear you hissing at our heresy. But before slamming shut the lid of your laptop and heading off to fetch garlic and a
pitchfork, take a couple of hours to weigh what we’re proposing.

OK, so, look, if it makes you feel better, one way to view EntityManager is to think of it as a single generic "repository" that works for
every entity in your system. From this point of view, JPA is your persistence layer. And there’s few good reasons to wrap this
abstraction in a second abstraction that’s less generic.

Even where a distinct persistence layer is appropriate, DAO-style repositories aren’t the unambiguously most-correct way to
factorize the equation:

• most nontrivial queries touch multiple entities, and so it’s often quite ambiguous which repository such a query belongs to,
• most queries are extremely specific to a particular fragment of program logic, and aren’t reused in different places across the

system, and
• the various operations of a repository rarely interact or share common internal implementation details.

Indeed, repositories, by nature, exhibit very low cohesion. A layer of repository objects might make sense if you have multiple
implementations of each repository, but in practice almost nobody ever does. That’s because they’re also extremely highly coupled
to their clients, with a very large API surface. And, on the contrary, a layer is only easily replaceable if it has a very narrow API.

 Some people do indeed use mock repositories for testing, but we really struggle to see any value in this. If you
don’t want to run your tests against our real database, it’s usually very easy to "mock" the database itself by
running tests against an in-memory Java database like H2. This works even better in Hibernate 6 than in older
versions of Hibernate, since HQL is now much more portable between platforms.

Phew, let’s move on.

1.8. Overview

It’s now time to begin our journey toward actually understanding the code we saw earlier.

This introduction will guide you through the basic tasks involved in developing a program that uses Hibernate for persistence:

1. configuring and bootstrapping Hibernate, and obtaining an instance of SessionFactory or EntityManagerFactory,
2. writing a domain model, that is, a set of entity classes which represent the persistent types in your program, and which map to

tables of your database,
3. customizing these mappings when the model maps to a pre-existing relational schema,
4. using the Session or EntityManager to perform operations which query the database and return entity instances, or which

update the data held in the database,
5. writing complex queries using the Hibernate Query Language (HQL) or native SQL, and, finally
6. tuning performance of the data access logic.

Naturally, we’ll start at the top of this list, with the least-interesting topic: configuration.

12

Chapter 2. Configuration and bootstrap

We would love to make this section short. Unfortunately, there’s several distinct ways to configure and bootstrap Hibernate, and
we’re going to have to describe at least two of them in detail.

The four basic ways to obtain an instance of Hibernate are shown in the following table:

Using the standard JPA-defined XML, and the operation
Persistence.createEntityManagerFactory()

Usually chosen when portability between JPA implementations is
important.

Using the Configuration class to construct a SessionFactory When portability between JPA implementations is not important,
this option is quicker, adds some flexibility and saves a typecast.

Using the more complex APIs defined in org.hibernate.boot Used primarily by framework integrators, this option is outside the
scope of this document.

By letting the container take care of the bootstrap process and of
injecting the SessionFactory or EntityManagerFactory

Used in a container environment like WildFly or Quarkus.

Here we’ll focus on the first two options.

Hibernate in containers

Actually, the last option is extremely popular, since every major Java application server and microservice framework comes
with built-in support for Hibernate. Such container environments typically also feature facilities to automatically manage the
lifecycle of an EntityManager or Session and its association with container-managed transactions.

To learn how to configure Hibernate in such a container environment, you’ll need to refer to the documentation of your
chosen container. For Quarkus, here’s the relevant documentation.

If you’re using Hibernate outside of a container environment, you’ll need to:

• include Hibernate ORM itself, along with the appropriate JDBC driver, as dependencies of your project, and
• configure Hibernate with information about your database, by specifying configuration properties.

2.1. Including Hibernate in your project build

First, add the following dependency to your project:

org.hibernate.orm:hibernate-core:{version}

Where {version} is the version of Hibernate you’re using.

You’ll also need to add a dependency for the JDBC driver for your database.

Table 2. JDBC driver dependencies

Database Driver dependency

PostgreSQL or CockroachDB org.postgresql:postgresql:{version}

MySQL or TiDB com.mysql:mysql-connector-j:{version}

MariaDB org.mariadb.jdbc:mariadb-java-client:{version}

DB2 com.ibm.db2:jcc:{version}

SQL Server com.microsoft.sqlserver:mssql-jdbc:${version}

Oracle com.oracle.database.jdbc:ojdbc11:${version}

H2 com.h2database:h2:{version}

HSQLDB org.hsqldb:hsqldb:{version}

13

https://quarkus.io/guides/hibernate-orm

Where {version} is the latest version of the JDBC driver for your databse.

2.2. Optional dependencies

Optionally, you might also add any of the following additional features:

Table 3. Optional dependencies

Optional feature Dependencies

An SLF4J logging implementation org.apache.logging.log4j:log4j-core
or org.slf4j:slf4j-jdk14

A JDBC connection pool, for example, Agroal org.hibernate.orm:hibernate-agroal
and io.agroal:agroal-pool

The Hibernate Metamodel Generator, especially if you’re using the
JPA criteria query API

org.hibernate.orm:hibernate-jpamodelgen

The Query Validator, for compile-time checking of HQL org.hibernate:query-validator

Hibernate Validator, an implementation of Bean Validation org.hibernate.validator:hibernate-validator
and org.glassfish:jakarta.el

Local second-level cache support via JCache and EHCache org.hibernate.orm:hibernate-jcache
and org.ehcache:ehcache

Local second-level cache support via JCache and Caffeine org.hibernate.orm:hibernate-jcache
and com.github.ben-manes.caffeine:jcache

Distributed second-level cache support via Infinispan org.infinispan:infinispan-hibernate-cache-v60

A JSON serialization library for working with JSON datatypes, for
example, Jackson or Yasson

com.fasterxml.jackson.core:jackson-databind
or org.eclipse:yasson

Hibernate Spatial org.hibernate.orm:hibernate-spatial

Envers, for auditing historical data org.hibernate.orm:hibernate-envers

You might also add the Hibernate bytecode enhancer to your Gradle build if you want to use field-level lazy fetching.

2.3. Configuration using JPA XML

Sticking to the JPA-standard approach, we would provide a file named persistence.xml, which we usually place in the META-INF
directory of a persistence archive, that is, of the .jar file or directory which contains our entity classes.

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
https://jakarta.ee/xml/ns/persistence/persistence_3_0.xsd"
 version="2.0">

 <persistence-unit name="org.hibernate.example">

 <class>org.hibernate.example.Book</class>
 <class>org.hibernate.example.Author</class>

 <properties>
 <!-- PostgreSQL -->
 <property name="jakarta.persistence.jdbc.url"
 value="jdbc:postgresql://localhost/example"/>

 <!-- Credentials -->
 <property name="jakarta.persistence.jdbc.user"
 value="gavin"/>
 <property name="jakarta.persistence.jdbc.password"
 value="hibernate"/>

 <!-- Automatic schema export -->

14

http://www.slf4j.org/
https://agroal.github.io
https://hibernate.org/orm/tooling/
https://github.com/hibernate/query-validator/
https://hibernate.org/validator
https://beanvalidation.org
https://www.ehcache.org
https://github.com/ben-manes/caffeine/
https://infinispan.org
https://github.com/FasterXML/jackson
https://projects.eclipse.org/projects/ee4j.yasson
https://docs.jboss.org/hibernate/orm/6.2/userguide/html_single/Hibernate_User_Guide.html#tooling-gradle

 <property name="jakarta.persistence.schema-generation.database.action"
 value="drop-and-create"/>

 <!-- SQL statement logging -->
 <property name="hibernate.show_sql" value="true"/>
 <property name="hibernate.format_sql" value="true"/>
 <property name="hibernate.highlight_sql" value="true"/>

 </properties>

 </persistence-unit>

</persistence>

The <persistence-unit> element defines a named persistence unit, that is:

• a collection of associated entity types, along with
• a set of default configuration settings, which may be augmented or overridden at runtime.

Each <class> element specifies the fully-qualified name of an entity class.

Scanning for entity classes

In some container environments, for example, in any EE container, the <class> elements are unnecessary, since the container
will scan the archive for annotated classes, and automatically recognize any class annotated @Entity.

Each <property> element specifies a configuration property and its value. Note that:

• the configuration properties in the jakarta.persistence namespace are standard properties defined by the JPA spec, and
• properties in the hibernate namespace are specific to Hibernate.

We may obtain an EntityManagerFactory by calling Persistence.createEntityManagerFactory():

EntityManagerFactory entityManagerFactory =
 Persistence.createEntityManagerFactory("org.hibernate.example");

If necessary, we may override configuration properties specified in persistence.xml:

EntityManagerFactory entityManagerFactory =
 Persistence.createEntityManagerFactory("org.hibernate.example",
 Map.of(AvailableSettings.JAKARTA_JDBC_PASSWORD, password));

2.4. Configuration using Hibernate API

Alternatively, the venerable class org.hibernate.cfg.Configuration allows an instance of Hibernate to be configured in Java code:

SessionFactory sessionFactory =
 new Configuration()
 .addAnnotatedClass(Book.class)
 .addAnnotatedClass(Author.class)
 // PostgreSQL
 .setProperty(AvailableSettings.JAKARTA_JDBC_URL, "jdbc:postgresql://localhost/example")
 // Credentials
 .setProperty(AvailableSettings.JAKARTA_JDBC_USER, user)
 .setProperty(AvailableSettings.JAKARTA_JDBC_PASSWORD, password)
 // Automatic schema export
 .setProperty(AvailableSettings.JAKARTA_HBM2DDL_DATABASE_ACTION,
 Action.SPEC_ACTION_DROP_AND_CREATE)
 // SQL statement logging
 .setProperty(AvailableSettings.SHOW_SQL, TRUE.toString())
 .setProperty(AvailableSettings.FORMAT_SQL, TRUE.toString())
 .setProperty(AvailableSettings.HIGHLIGHT_SQL, TRUE.toString())
 // Create a new SessionFactory
 .buildSessionFactory();

The Configuration class has survived almost unchanged since the very earliest (pre-1.0) versions of Hibernate, and so it doesn’t look
particularly modern. On the other hand, it’s very easy to use, and exposes some options that persistence.xml doesn’t support.

15

Advanced configuration options

Actually, the Configuration class is just a very simple facade for the more modern, much more powerful—but more
complex—API defined in the package org.hibernate.boot. This API is useful if you have very advanced requirements, for
example, if you’re writing a framework or implementing a container. You’ll find more information in the User Guide, and in the
{versionDocBase}/javadocs/org/hibernate/boot/package-summary.html[package-level documentation] of
org.hibernate.boot.

2.5. Configuration using Hibernate properties file

If we’re using the Hibernate Configuration API, but we don’t want to put certain configuration properties directly in the Java code,
we can specify them in a file named hibernate.properties, and place the file in the root classpath.

PostgreSQL
jakarta.persistence.jdbc.url=jdbc:postgresql://localhost/example
Credentials
jakarta.persistence.jdbc.user=hibernate
jakarta.persistence.jdbc.password=zAh7mY$2MNshzAQ5

SQL statement logging
hibernate.show_sql=true
hibernate.format_sql=true
hibernate.highlight_sql=true

2.6. Basic configuration settings

The class org.hibernate.cfg.AvailableSettings enumerates all the configuration properties understood by Hibernate.

Of course, we’re not going to cover every useful configuration setting in this chapter. Instead, we’ll mention the ones you need to get
started, and come back to some other important settings later, especially when we talk about performance tuning.

 Hibernate has many—too many—switches and toggles. Please don’t go crazy messing about with these settings;
most of them are rarely needed, and many only exist to provide backward compatibility with older versions of
Hibernate. With rare exception, the default behavior of every one of these settings was carefully chosen to be the
behavior we recommend.

The properties you really do need to get started are these three:

Table 4. JDBC connection settings

Configuration property name Purpose

jakarta.persistence.jdbc.url JDBC URL of your database

jakarta.persistence.jdbc.user and
jakarta.persistence.jdbc.password

Your database credentials

 In Hibernate 6, you don’t need to specify hibernate.dialect. The correct Hibernate SQL Dialect will be
determined for you automatically. The only reason to specify this property is if you’re using a custom user-written
Dialect class.

Similarly, neither hibernate.connection.driver_class nor jakarta.persistence.jdbc.driver is needed when
working with one of the supported databases.

Pooling JDBC connections is an extremely important performance optimization. You can set the size of Hibernate’s built-in
connection pool using this property:

Table 5. Built-in connection pool size

Configuration property name Purpose

hibernate.connection.pool_size The size of the built-in connection pool

 By default, Hibernate uses a simplistic built-in connection pool. This pool is not meant for use in production, and

16

https://docs.jboss.org/hibernate/orm/6.2/userguide/html_single/Hibernate_User_Guide.html#bootstrap-native

later, when we discuss performance, we’ll see how to select a more robust implementation.

Alternatively, in a container environment, you’ll need at least one of these properties:

Table 6. Transaction management settings

Configuration property name Purpose

jakarta.persistence.transactionType (Optional, defaults to JTA) Determines if transaction management is via JTA or resource-
local transactions. Specify RESOURCE_LOCAL if JTA should not be used.

jakarta.persistence.jtaDataSource JNDI name of a JTA datasource

jakarta.persistence.nonJtaDataSource JNDI name of a non-JTA datasource

In this case, Hibernate obtains pooled JDBC database connections from a container-managed DataSource.

2.7. Automatic schema export

You can have Hibernate infer your database schema from the mapping annotations you’ve specified in your Java code, and export
the schema at initialization time by specifying one or more of the following configuration properties:

Table 7. Schema management settings

Configuration property name Purpose

jakarta.persistence.schema-generation.database.action • If drop-and-create, first drop the schema and then export
tables, sequences, and constraints

• If create, export tables, sequences, and constraints, without
attempting to drop them first

• If create-drop, drop the schema and recreate it on
SessionFactory startup Additionally, drop the schema on
SessionFactory shutdown

• If drop, drop the schema on SessionFactory shutdown
• If validate, validate the database schema without changing

it
• If update, only export what’s missing in the schema

jakarta.persistence.create-database-schemas (Optional) If true, automatically create schemas and catalogs

jakarta.persistence.schema-generation.create-source (Optional) If metadata-then-script or script-then-metadata,
execute an additional SQL script when exported tables and
sequences

jakarta.persistence.schema-generation.create-script-source (Optional) The name of the SQL script to be executed

This feature is extremely useful for testing.

 The easiest way to pre-initialize a database with test or "reference" data is to place a list of SQL insert statements
in a file named, for example, import.sql, and specify the path to this file using the property
jakarta.persistence.schema-generation.create-script-source.

This approach is cleaner than writing Java code to instantiate entity instances and calling persist() on each of
them.

 Alternatively, the SchemaManager API allow you to control schema export programmatically.

sessionFactory.getSchemaManager().exportMappedObjects(true);

2.8. Logging the generated SQL

To see the generated SQL as it’s sent to the database, you have two options.

One way is to set the property hibernate.show_sql to true, and Hibernate will log SQL direct to the console. You can make the
output much more readable by enabling formatting or highlighting. These settings really help when troubleshooting the generated

17

SQL statements.

Table 8. Settings for SQL logging to the console

Configuration property name Purpose

hibernate.show_sql If true, log SQL directly to the console

hibernate.format_sql If true, log SQL in a multiline, indented format

hibernate.highlight_sql If true, log SQL with syntax highlighting via ANSI escape codes

Alternatively, you can enable debug-level logging for the category org.hibernate.SQL using your preferred SLF4J logging
implementation.

For example, if you’re using Log4J 2 (as above in Optional dependencies), add these lines to your log4j2.properties file:

SQL execution
logger.hibernate.name = org.hibernate.SQL
logger.hibernate.level = debug

JDBC parameter binding
logger.jdbc-bind.name=org.hibernate.orm.jdbc.bind
logger.jdbc-bind.level=trace
JDBC result set extraction
logger.jdbc-extract.name=org.hibernate.orm.jdbc.extract
logger.jdbc-extract.level=trace

But with this approach we miss out on the pretty highlighting.

2.9. Minimizing repetitive mapping information

The following properties are very useful for minimizing the amount of information you’ll need to explicitly specify in @Table and
@Column annotations, which we’ll discuss below in Object/relational mapping:

Table 9. Settings for minimizing explicit mapping information

Configuration property name Purpose

hibernate.default_schema A default schema name for entities which do not explicitly declare one

hibernate.default_catalog A default catalog name for entities which do not explicitly declare one

hibernate.physical_naming_strategy A PhysicalNamingStrategy implementing your database naming standards

hibernate.implicit_naming_strategy An ImplicitNamingStrategy which specifies how "logical" names of relational objects
should be inferred when no name is specified in annotations

 Writing your own PhysicalNamingStrategy and/or ImplicitNamingStrategy is an especially good way to reduce
the clutter of annotations on your entity classes, and to implement your database naming conventions, and so we
think you should do it for any nontrivial data model. We’ll have more to say about them in Naming strategies.

2.10. Nationalized character data in SQL Server

By default, SQL Server’s char and varchar types don’t accommodate Unicode data. But a Java string may contain any Unicode
character. So, if you’re working with SQL Server, you might need to force Hibernate to use the nchar and nvarchar column types.

Table 10. Setting the use of nationalized character data

Configuration property name Purpose

hibernate.use_nationalized_character_data Use nchar and nvarchar instead of char and varchar

On the other hand, if only some columns store nationalized data, use the @Nationalized annotation to indicate fields of your entities
which map these columns.

18

 Alternatively, you can configure SQL Server to use the UTF-8 enabled collation _UTF8.

19

Chapter 3. Entities

An entity is a Java class which represents data in a relational database table. We say that the entity maps or maps to the table. Much
less commonly, an entity might aggregate data from multiple tables, but we’ll get to that later.

An entity has attributes—properties or fields—which map to columns of the table. In particular, every entity must have an identifier
or id, which maps to the primary key of the table. The id allows us to uniquely associate a row of the table with an instance of the
Java class, at least within a given persistence context.

We’ll explore the idea of a persistence context later. For now, think of it as a one-to-one mapping between ids and entity instances.

An instance of a Java class cannot outlive the virtual machine to which it belongs. But we may think of an entity instance having a
lifecycle which transcends a particular instantiation in memory. By providing its id to Hibernate, we may re-materialize the instance
in a new persistence context, as long as the associated row is present in the database. Therefore, the operations persist() and
remove() may be thought of as demarcating the beginning and end of the lifecycle of an entity, at least with respect to persistence.

Thus, an id represents the persistent identity of an entity, an identity that outlives a particular instantiation in memory. And this is an
important difference between entity class itself and the values of its attributes—the entity has a persistent identity, and a well-
defined lifecycle with respect to persistence, whereas a String or List representing one of its attribute values doesn’t.

An entity usually has associations to other entities. Typically, an association between two entities maps to a foreign key in one of the
database tables. A group of mutually associated entities is often called a domain model, though data model is also a perfectly good
term.

3.1. Entity classes

An entity must:

• be a non-final class,
• with a non-private constructor with no parameters.

On the other hand, the entity class may be either concrete or abstract, and it may have any number of additional constructors.

 An entity class may be a static inner class.

Every entity class must be annotated @Entity.

@Entity
class Book {
 Book() {}
 ...
}

Alternatively, the class may be identified as an entity type by providing an XML-based mapping for the class.

Mapping entities using XML

When XML-based mappings are used, the <entity> element is used to declare an entity class:

<entity-mappings>
 <package>org.hibernate.example</package>

 <entity class="Book">
 <attributes> ... </attributes>
 </entity>

 ...
</entity-mappings>

Since the orm.xml mapping file format defined by the JPA specification was modelled closely on the annotation-based
mappings, it’s usually easy to go back and forth between the two options.

We won’t have much more to say about XML-based mappings in this Introduction, since it’s not our preferred way to do things.

20

"Dynamic" models

We love representing entities as classes because the classes give us a type-safe model of our data. But Hibernate also has the
ability to represent entities as detyped instances of java.util.Map. There’s information in the User Guide, if you’re curious.

This must sound like a weird feature for a project that places importance on type-safety. Actually, it’s a useful capability for a
very particular sort of generic code. For example, Hibernate Envers is a great auditing/versioning system for Hibernate
entities. Envers makes use of maps to represent its versioned model of the data.

3.2. Access types

Each entity class has a default access type, either:

• direct field access, or
• property access.

Hibernate automatically determines the access type from the location of attribute-level annotations. Concretely:

• if a field is annotated @Id, field access is used, or
• if a getter method is annotated @Id, property access is used.

Back when Hibernate was just a baby, property access was quite popular in the Hibernate community. Today, however, field access
is much more common.

 The default access type may be specified explicitly using the @Access annotation, but we strongly discourage this,
since it’s ugly and never necessary.

 Mapping annotations should be placed consistently:

• if @Id annotates a field, the other mapping annotations should also be applied to fields, or,
• if @Id annotates a getter, the other mapping annotations should be applied to getters.

It is in principle possible to mix field and property access using explicit @Access annotations at the attribute level.
We don’t recommend doing this.

An entity class like Book, which does not extend any other entity class is called a root entity. Every root entity must declare an
identifier attribute.

3.3. Entity class inheritance

An entity class may extend another entity class.

@Entity
class AudioBook extends Book {
 AudioBook() {}
 ...
}

A subclass entity inherits every persistent attribute of every entity it extends.

A root entity may also extend another class and inherit mapped attributes from the other class. But in this case, the class which
declares the mapped attributes must be annotated @MappedSuperclass.

@MappedSuperclass
class Versioned {
 ...
}

@Entity
class Book extends Versioned {
 ...
}

A root entity class must declare an attribute annotated @Id, or inherit one from a @MappedSuperclass. A subclass entity always
inherits the identifier attribute of the root entity. It may not declare its own @Id attribute.

21

https://docs.jboss.org/hibernate/orm/6.2/userguide/html_single/Hibernate_User_Guide.html#dynamic-model
https://hibernate.org/orm/envers/

3.4. Identifier attributes

An identifier attribute is usually a field:

@Entity
class Book {
 Book() {}

 @Id
 Long id;

 ...
}

But it may be a property:

@Entity
class Book {
 Book() {}

 private Long id;

 @Id
 Long getId() { return id; }
 void setId(Long id) { this.id = id; }

 ...
}

An identifier attribute must be annotated @Id or @EmbeddedId.

Identifier values may be:

• assigned by the application, that is, by your Java code, or
• generated and assigned by Hibernate.

We’ll discuss the second option first.

3.5. Generated identifiers

An identifier is often system-generated, in which case it should be annotated @GeneratedValue:

@Id @GeneratedValue
Long id;

 System-generated identifiers, or surrogate keys make it easier to evolve or refactor the relational data model. If
you have the freedom to define the relational schema, we recommend the use of surrogate keys. On the other
hand, if, as is more common, you’re working with a pre-existing database schema, you might not have the option.

JPA defines the following strategies for generating ids, which are enumerated by GenerationType:

Table 11. Standard id generation strategies

Strategy Java type Implementation

GenerationType.UUID UUID or String A Java UUID

GenerationType.IDENTITY Long or Integer An identity or autoincrement column

GenerationType.SEQUENCE Long or Integer A database sequence

GenerationType.TABLE Long or Integer A database table

GenerationType.AUTO Long or Integer Selects SEQUENCE, TABLE, or UUID based on the identifier type and capabilities of
the database

For example, this UUID is generated in Java code:

22

@Id @GeneratedValue UUID id; // AUTO strategy selects UUID based on the field type

This id maps to a SQL identity, auto_increment, or bigserial column:

@Id @GeneratedValue(strategy=IDENTITY) Long id;

The @SequenceGenerator and @TableGenerator annotations allow further control over SEQUENCE and TABLE generation respectively.

Consider this sequence generator:

@SequenceGenerator(name="bookSeq", sequenceName="seq_book", initialValue = 5, allocationSize=10)

Values are generated using a database sequence defined as follows:

create sequence seq_book start with 5 increment by 10

Notice that Hibernate doesn’t have to go to the database every time a new identifier is needed. Instead, a given process obtains a
block of ids, of size allocationSize, and only needs to hit the database each time the block is exhausted. Of course, the downside is
that generated identifiers are not contiguous.

 If you let Hibernate export your database schema, the sequence definition will have the right start with and
increment values. But if you’re working with a database schema managed outside Hibernate, make sure the
initialValue and allocationSize members of @SequenceGenerator match the start with and increment
specified in the DDL.

Any identifier attribute may now make use of the generator named bookSeq:

@Id
@GeneratedValue(strategy=SEQUENCE, generator="bookSeq") // reference to generator defined elsewhere
Long id;

Actually, it’s extremely common to place the @SequenceGenerator annotation on the @Id attribute that makes use of it:

@Id
@GeneratedValue(strategy=SEQUENCE, generator="bookSeq") // reference to generator defined below
@SequenceGenerator(name="bookSeq", sequenceName="seq_book", initialValue = 5, allocationSize=10)
Long id;

 JPA id generators may be shared between entities. A @SequenceGenerator or @TableGenerator must have a name,
and may be shared between multiple id attributes. This fits somewhat uncomfortably with the common practice
of annotating the @Id attribute which makes use of the generator!

As you can see, JPA provides quite adequate support for the most common strategies for system-generated ids. However, the
annotations themselves are a bit more intrusive than they should be, and there’s no well-defined way to extend this framework to
support custom strategies for id generation. Nor may @GeneratedValue be used on a property not annotated @Id. Since custom id
generation is a rather common requirement, Hibernate provides a very carefully-designed framework for user-defined Generators,
which we’ll discuss in User-defined generators.

3.6. Natural keys as identifiers

Not every identifier attribute maps to a (system-generated) surrogate key. Primary keys which are meaningful to the user of the
system are called natural keys.

When the primary key of a table is a natural key, we don’t annotate the identifier attribute @GeneratedValue, and it’s the
responsibility of the application code to assign a value to the identifier attribute.

@Entity
class Book {
 @Id
 String isbn;

 ...
}

23

Of particular interest are natural keys which comprise more than one database column, and such natural keys are called composite
keys.

3.7. Composite identifiers

If your database uses composite keys, you’ll need more than one identifier attribute. There are two ways to map composite keys in
JPA:

• using an @IdClass, or
• using an @EmbeddedId.

Perhaps the most immediately-natural way to represent this in an entity class is with multiple fields annotated @Id, for example:

@Entity
@IdClass(BookId.class)
class Book {
 Book() {}

 @Id
 String isbn;

 @Id
 int printing;

 ...
}

But this approach comes with a problem: what object can we use to identify a Book and pass to methods like find() which accept an
identifier?

The solution is to write a separate class with fields that match the identifier attributes of the entity. The @IdClass annotation of the
Book entity identifies the id class to use for that entity:

class BookId {

 String isbn;
 int printing;

 BookId() {}

 BookId(String isbn, int printing) {
 this.isbn = isbn;
 this.printing = printing;
 }

 @Override
 public boolean equals(Object other) {
 if (other instanceof BookId) {
 BookId bookId = (BookId) other;
 return bookId.isbn.equals(isbn)
 && bookId.printing == printing;
 }
 else {
 return false;
 }
 }

 @Override
 public int hashCode() {
 return isbn.hashCode();
 }
}

Every id class should override equals() and hashCode().

This is not our preferred approach. Instead, we recommend that the BookId class be declared as an @Embeddable type:

@Embeddable
class BookId {

 String isbn;

24

 int printing;

 BookId() {}

 BookId(String isbn, int printing) {
 this.isbn = isbn;
 this.printing = printing;
 }

 ...
}

We’ll learn more about Embeddable objects below.

Now the entity class may reuse this definition using @EmbeddedId, and the @IdClass annotation is no longer required:

@Entity
class Book {
 Book() {}

 @EmbeddedId
 BookId bookId;

 ...
}

This second approach eliminates some duplicated code.

Either way, we may now use BookId to obtain instances of Book:

Book book = session.find(Book.class, new BookId(isbn, printing));

3.8. Version attributes

An entity may have an attribute which is used by Hibernate for optimistic lock checking. A version attribute is usually of type
Integer, Short, Long, LocalDateTime, OffsetDateTime, ZonedDateTime, or Instant.

@Version
LocalDateTime lastUpdated;

Version attributes are automatically assigned by Hibernate when an entity is made persistent, and automatically incremented or
updated each time the entity is updated.

 If an entity doesn’t have a version number, which often happens when mapping legacy data, we can still do
optimistic locking. The @OptimisticLocking annotation lets us specify that optimistic locks should be checked by
validating the values of ALL fields, or only the DIRTY fields of the entity. And the @OptimisticLock annotation lets
us selectively exclude certain fields from optimistic locking.

The @Id and @Version attributes we’ve already seen are just specialized examples of basic attributes.

3.9. Natural id attributes

Even when an entity has a surrogate key, it should always be possible to write down a combination of fields which uniquely
identifies an instance of the entity, from the point of view of the user of the system. This combination of fields is its natural key.
Above, we considered the case where the natural key coincides with the primary key. Here, the natural key is a second unique key of
the entity, distinct from its surrogate primary key.

 If you can’t identify a natural key, it might be a sign that you need to think more carefully about some aspect of
your data model. If an entity doesn’t have a meaningful unique key, then it’s impossible to say what event or
object it represents in the "real world" outside your program.

Since it’s extremely common to retrieve an entity based on its natural key, Hibernate has a way to mark the attributes of the entity
which make up its natural key. Each attribute must be annotated @NaturalId.

@Entity
class Book {

25

 Book() {}

 @Id @GeneratedValue
 Long id; // the system-generated surrogate key

 @NaturalId
 String isbn; // belongs to the natural key

 @NaturalId
 int printing; // also belongs to the natural key

 ...
}

Hibernate automatically generates a UNIQUE constraint on the columns mapped by the annotated fields.

 Consider using the natural id attributes to implement equals() and hashCode().

The payoff for doing this extra work, as we will see much later, is that we can take advantage of optimized natural id lookups that
make use of the second-level cache.

Note that even when you’ve identified a natural key, we still recommend the use of a generated surrogate key in foreign keys, since
this makes your data model much easier to change.

3.10. Basic attributes

A basic attribute of an entity is a field or property which maps to a single column of the associated database table. The JPA
specification defines a quite limited set of basic types:

Table 12. JPA-standard basic attribute types

Classification Package Types

Primitive types boolean, int, double, etc

Primitive wrappers java.lang Boolean, Integer, Double, etc

Strings java.lang String

Arbitrary-precision numeric types java.math BigInteger, BigDecimal

Date/time types java.time LocalDate, LocalTime, LocalDateTime, OffsetDateTime, Instant

Deprecated date/time types Ὀ� java.util Date, Calendar

Deprecated JDBC date/time types Ὀ� java.sql Date, Time, Timestamp

Binary and character arrays byte[], char[]

UUIDs java.util UUID

Enumerated types Any enum

Serializable types Any type which implements java.io.Serializable

 We’re begging you to use types from the java.time package instead of anything which inherits java.util.Date.

 Serializing a Java object and storing its binary representation in the database is usually wrong. As we’ll soon see in
Embeddable objects, Hibernate has much better ways to handle complex Java objects.

Hibernate slightly extends this list with the following types:

26

Table 13. Additional basic attribute types in Hibernate

Classification Package Types

Additional date/time types java.time Duration, ZoneId, ZoneOffset, Year, and even ZonedDateTime

JDBC LOB types java.sql Blob, Clob, NClob

Java class object java.lang Class

Miscellaneous types java.util Currency, URL, TimeZone

The @Basic annotation explicitly specifies that an attribute is basic, but it’s often not needed, since attributes are assumed basic by
default. On the other hand, if a non-primitively-typed attribute cannot be null, use of @Basic(optional=false) is highly
recommended.

@Basic(optional=false) String firstName;
@Basic(optional=false) String lastName;
String middleName; // may be null

Note that primitively-typed attributes are inferred NOT NULL by default.

How to make a column not null in JPA

There are two standard ways to add a NOT NULL constraint to a mapped column in JPA:

• using @Basic(optional=false), or
• using @Column(nullable=false).

You might wonder what the difference is.

Well, it’s perhaps not obvious to a casual user of the JPA annotations, but they actually come in two "layers":

• annotations like @Entity, @Id, and @Basic belong to the logical layer, the subject of the current chapter—they specify the
semantics of your Java domain model, whereas

• annotations like @Table and @Column belong to the mapping layer, the topic of the next chapter—they specify how
elements of the domain model map to objects in the relational database.

Information may be inferred from the logical layer down to the mapping layer, but is never inferred in the opposite direction.

Now, the @Column annotation, to whom we’ll be properly introduced a bit later, belongs to the mapping layer, and so its
nullable member only affects schema generation (resulting in a not null constraint in the generated DDL). On the other
hand, the @Basic annotation belongs to the logical layer, and so an attribute marked optional=false is checked by Hibernate
before it even writes an entity to the database. Note that:

• optional=false implies nullable=false, but
• nullable=false does not imply optional=false.

Therefore, we prefer @Basic(optional=false) to @Column(nullable=false).

 But wait! An even better solution is to use the @NotNull annotation from Bean Validation. Just add
Hibernate Validator to your project build, as described in Optional dependencies.

3.11. Enumerated types

We included Java enums on the list above. An enumerated type is considered a sort of basic type, but since most databases don’t
have a native ENUM type, JPA provides a special @Enumerated annotation to specify how the enumerated values should be
represented in the database:

• by default, an enum is stored as an integer, the value of its ordinal() member, but
• if the attribute is annotated @Enumerated(STRING), it will be stored as a string, the value of its name() member.

//here, an ORDINAL encoding makes sense
@Enumerated
@Basic(optional=false)
DayOfWeek dayOfWeek;

27

//but usually, a STRING encoding is better
@Enumerated(EnumType.STRING)
@Basic(optional=false)
Status status;

In Hibernate 6, an enum annotated @Enumerated(STRING) is mapped to:

• a VARCHAR column type with a CHECK constraint on most databases, or
• an ENUM column type on MySQL.

Any other enum is mapped to a TINYINT column with a CHECK constraint.

 JPA picks the wrong default here. In most cases, storing an integer encoding of the enum value makes the
relational data harder to interpret.

Even considering DayOfWeek, the encoding to integers is ambiguous. If you check java.time.DayOfWeek, you’ll
notice that SUNDAY is encoded as 6. But in the country I was born, SUNDAY is the first day of the week!

So we prefer @Enumerated(STRING) for most enum attributes.

An interesting special case is PostgreSQL. Postgres supports named ENUM types, which must be declared using a DDL CREATE TYPE
statement. Sadly, these ENUM types aren’t well-integrated with the language nor well-supported by the Postgres JDBC driver, so
Hibernate doesn’t use them by default. But if you would like to use a named enumerated type on Postgres, just annotate your enum
attribute like this:

@JdbcTypeCode(SqlTypes.NAMED_ENUM)
@Basic(optional=false)
Status status;

The limited set of pre-defined basic attribute types can be stretched a bit further by supplying a converter.

3.12. Converters

A JPA AttributeConverter is responsible for:

• converting a given Java type to one of the types listed above, and/or
• perform any other sort of pre- and post-processing you might need to perform on a basic attribute value before writing and

reading it to or from the database.

Converters substantially widen the set of attribute types that can be handled by JPA.

There are two ways to apply a converter:

• the @Convert annotation applies an AttributeConverter to a particular entity attribute, or
• the @Converter annotation (or, alternatively, the @ConverterRegistration annotation) registers an AttributeConverter for

automatic application to all attributes of a given type.

For example, the following converter will be automatically applied to any attribute of type BitSet, and takes care of persisting the
BitSet to a column of type varbinary:

@Converter(autoApply = true)
public static class EnumSetConverter implements AttributeConverter<EnumSet<DayOfWeek>,Integer> {
 @Override
 public Integer convertToDatabaseColumn(EnumSet<DayOfWeek> enumSet) {
 int encoded = 0;
 var values = DayOfWeek.values();
 for (int i = 0; i<values.length; i++) {
 if (enumSet.contains(values[i])) {
 encoded |= 1<<i;
 }
 }
 return encoded;
 }

 @Override
 public EnumSet<DayOfWeek> convertToEntityAttribute(Integer encoded) {
 var set = EnumSet.noneOf(DayOfWeek.class);
 var values = DayOfWeek.values();
 for (int i = 0; i<values.length; i++) {

28

 if (((1<<i) & encoded) != 0) {
 set.add(values[i]);
 }
 }
 return set;
 }
}

On the other hand, if we don’t set autoapply=true, then we must explicitly apply the converter using the @Convert annotation:

@Convert(converter = BitSetConverter.class)
@Basic(optional = false)
BitSet bitset;

All this is nice, but it probably won’t surprise you that Hibernate goes beyond what is required by JPA.

3.13. Compositional basic types

Hibernate considers a "basic type" to be formed by the marriage of two objects:

• a JavaType, which models the semantics of a certain Java class, and
• a JdbcType, representing a SQL type which is understood by JDBC.

When mapping a basic attribute, we may explicitly specify a JavaType, a JdbcType, or both.

JavaType

An instance of org.hibernate.type.descriptor.java.JavaType represents a particular Java class. It’s able to:

• compare instances of the class to determine if an attribute of that class type is dirty (modified),
• produce a useful hash code for an instance of the class,
• coerce values to other types, and, in particular,
• convert an instance of the class to one of several other equivalent Java representations at the request of its partner JdbcType.

For example, IntegerJavaType knows how to convert an Integer or int value to the types Long, BigInteger, and String, among
others.

We may explicitly specify a Java type using the @JavaType annotation, but for the built-in JavaTypes this is never necessary.

@JavaType(LongJavaType.class) // not needed, this is the default JavaType for long
long currentTimeMillis;

For a user-written JavaType, the annotation is more useful:

@JavaType(BitSetJavaType.class)
BitSet bitSet;

Alternatively, the @JavaTypeRegistration annotation may be used to register BitSetJavaType as the default JavaType for BitSet.

JdbcType

A org.hibernate.type.descriptor.jdbc.JdbcType is able to read and write a single Java type from and to JDBC.

For example, VarcharJdbcType takes care of:

• writing Java strings to JDBC PreparedStatements by calling setString(), and
• reading Java strings from JDBC ResultSets using getString().

By pairing LongJavaType with VarcharJdbcType in holy matrimony, we produce a basic type which maps Longs and primitive longss
to the SQL type VARCHAR.

We may explicitly specify a JDBC type using the @JdbcType annotation.

@JdbcType(VarcharJdbcType.class)
long currentTimeMillis;

Alternatively, we may specify a JDBC type code:

29

@JdbcTypeCode(Types.VARCHAR)
long currentTimeMillis;

The @JdbcTypeRegistration annotation may be used to register a user-written JdbcType as the default for a given SQL type code.

JDBC types and JDBC type codes

The types defined by the JDBC specification are enumerated by the integer type codes in the class java.sql.Types. Each
JDBC type is an abstraction of a commonly-available type in SQL. For example, Types.VARCHAR represents the SQL type
VARCHAR (or VARCHAR2 on Oracle).

Since Hibernate understand more SQL types than JDBC, there’s an extended list of integer type codes in the class
org.hibernate.type.SqlTypes. For example, SqlTypes.GEOMETRY represents the spatial data type GEOMETRY.

AttributeConverter

If a given JavaType doesn’t know how to convert its instances to the type required by its partner JdbcType, we must help it out by
providing a JPA AttributeConverter to perform the conversion.

For example, to form a basic type using LongJavaType and TimestampJdbcType, we would provide an
AttributeConverter<Long,Timestamp>.

@JdbcType(TimestampJdbcType.class)
@Convert(converter = LongToTimestampConverter.class)
long currentTimeMillis;

Let’s abandon our analogy right here, before we start calling this basic type a "throuple".

3.14. Embeddable objects

An embeddable object is a Java class whose state maps to multiple columns of a table, but which doesn’t have its own persistent
identity. That is, it’s a class with mapped attributes, but no @Id attribute.

An embeddable object can only be made persistent by assigning it to the attribute of an entity. Since the embeddable object does
not have its own persistent identity, its lifecycle with respect to persistence is completely determined by the lifecycle of the entity to
which it belongs.

An embeddable class must be annotated @Embeddable instead of @Entity.

@Embeddable
class Name {

 @Basic(optional=false)
 String firstName;

 @Basic(optional=false)
 String lastName;

 String middleName;

 Name() {}

 Name(String firstName, String middleName, String lastName) {
 this.firstName = firstName;
 this.middleName = middleName;
 this.lastName = lastName;
 }

 ...
}

An embeddable class must satisfy the same requirements that entity classes satisfy, with the exception that an embeddable class
has no @Id attribute. In particular, it must have a constructor with no parameters.

Alternatively, an embeddable type may be defined as a Java record type:

@Embeddable

30

record Name(String firstName, String middleName, String lastName) {}

In this case, the requirement for a constructor with no parameters is relaxed.

 Unfortunately, as of May 2023, Java record types still cannot be used as @EmbeddedIds.

We may now use our Name class (or record) as the type of an entity attribute:

@Entity
class Author {
 @Id @GeneratedValue
 Long id;

 Name name;

 ...
}

Embeddable types can be nested. That is, an @Embeddable class may have an attribute whose type is itself a different @Embeddable
class.

 JPA provides an @Embedded annotation to identify an attribute of an entity that refers to an embeddable type. This
annotation is completely optional, and so we don’t usually use it.

On the other hand a reference to an embeddable type is never polymorphic. One @Embeddable class F may inherit a second
@Embeddable class E, but an attribute of type E will always refer to an instance of that concrete class E, never to an instance of F.

Usually, embeddable types are stored in a "flattened" format. Their attributes map columns of the table of their parent entity. Later,
in Mapping embeddable types to UDTs or to JSON, we’ll see a couple of different options.

An attribute of embeddable type represents a relationship between a Java object with a persistent identity, and a Java object with
no persistent identity. We can think of it as a whole/part relationship. The embeddable object belongs to the entity, and can’t be
shared with other entity instances. And it exits for only as long as its parent entity exists.

Next we’ll discuss a different kind of relationship: a relationship between Java objects that each have their persistent identity and
persistence lifecycle.

3.15. Associations

An association is a relationship between entities. We usually classify associations based on their multiplicity. If E and F are both entity
classes, then:

• a one-to-one association relates at most one unique instance E with at most one unique instance of F,
• a many-to-one association relates zero or more instances of E with a unique instance of F, and
• a many-to-many association relates zero or more instances of E with zero or more instance of F.

An association between entity classes may be either:

• unidirectional, navigable from E to F but not from F to E, or
• bidirectional, and navigable in either direction.

In this example data model, we can see the sorts of associations which are possible:

31

 An astute observer of the diagram above might notice that the relationship we’ve presented as a unidirectional
one-to-one association could reasonably be represented in Java using subtyping. This is quite normal. A one-to-
one association is the usual way we implement subtyping in a fully-normalized relational model. It’s related to the
JOINED inheritance mapping strategy.

There are three annotations for mapping associations: @ManyToOne, @OneToMany, and @ManyToMany. They share some common
annotation members:

Table 14. Association-defining annotation members

Member Interpretation Default value

cascade Persistence operations which should cascade to the associated entity;
a list of CascadeTypes

{}

fetch Whether the association is eagerly fetched or may be proxied • LAZY for @OneToMany and @ManyToMany
• EAGER for @ManyToOne Ὀ�Ὀ�Ὀ�

targetEntity The associated entity class Determined from the attribute type
declaration

optional For a @ManyToOne or @OneToOne association, whether the association
can be null

true

mappedBy For a bidirectional association, an attribute of the associated entity
which maps the association

By default, the association is assumed
unidirectional

We’ll explain the effect of these members as we consider the various types of association mapping.

Let’s begin with the most common association multiplicity.

3.16. Many-to-one

A many-to-one association is the most basic sort of association we can imagine. It maps completely naturally to a foreign key in the
database. Almost all the associations in your domain model are going to be of this form.

 Later, we’ll see how to map a many-to-one association to an association table.

The @ManyToOne annotation marks the "to one" side of the association, so a unidirectional many-to-one association looks like this:

class Book {
 @Id @GeneratedValue
 Long id;

 @ManyToOne(fetch=LAZY)
 Publisher publisher;

 ...
}

Here, the Book table has a foreign key column holding the identifier of the associated Publisher.

 A very unfortunate misfeature of JPA is that @ManyToOne associations are fetched eagerly by default. This is almost
never what we want. Almost all associations should be lazy. The only scenario in which fetch=EAGER makes sense
is if we think there’s always a very high probability that the associated object will be found in the second-level
cache. Whenever this isn’t the case, remember to explicitly specify fetch=LAZY.

Most of the time, we would like to be able to easily navigate our associations in both directions. We do need a way to get the
Publisher of a given Book, but we would also like to be able to obtain all the Books belonging to a given publisher.

To make this association bidirectional, we need to add a collection-valued attribute to the Publisher class, and annotate it
@OneToMany.

 Hibernate needs to proxy unfetched associations at runtime. Therefore, the many-valued side must be declared
using an interface type like Set or List, and never using a concrete type like HashSet or ArrayList.

32

To indicate clearly that this is a bidirectional association, and to reuse any mapping information already specified in the Book entity,
we must use the mappedBy annotation member to refer back to Book.publisher.

@Entity
class Publisher {
 @Id @GeneratedValue
 Long id;

 @OneToMany(mappedBy="publisher")
 Set<Book> books;

 ...
}

The Publisher.books field is called the unowned side of the association.

Now, we passionately hate the stringly-typed mappedBy reference to the owning side of the association. Thankfully, the Metamodel
Generator gives us a way to make it a bit more typesafe:

@OneToMany(mappedBy=Book_.PUBLISHER) // get used to doing it this way!
Set<Book> books;

We’re going to use this approach for the rest of the Introduction.

To modify a bidirectional association, we must change the owning side.

 Changes made to the unowned side of an association are never synchronized to the database. If we desire to
change an association in the database, we must change it from the owning side. Here, we must set
Book.publisher.

In fact, it’s often necessary to change both sides of a bidirectional association. For example, if the collection
Publisher.books was stored in the second-level cache, we must also modify the collection, to ensure that the
second-level cache remains synchronized with the database.

That said, it’s not a hard requirement to update the unowned side, at least if you’re sure you know what you’re doing.

 In principle Hibernate does allow you to have a unidirectional one-to-many, that is, a @OneToMany with no
matching @ManyToOne on the other side. In practice, this mapping is unnatural, and just doesn’t work very well.
Avoid it.

Here we’ve used Set as the type of the collection, but Hibernate also allows the use of List or Collection here, with almost no
difference in semantics. In particular, the List may not contain duplicate elements, and its order will not be persistent.

@OneToMany(mappedBy=Book_.PUBLISHER)
Collection<Book> books;

We’ll see how to map a collection with a persistent order much later.

Set, List, or Collection?

A one-to-many association mapped to a foreign key can never contain duplicate elements, so Set seems like the most
semantically correct Java collection type to use here, and so that’s the conventional practice in the Hibernate community.

The catch associated with using a set is that we must carefully ensure that Book has a high-quality implementation of
equals() and hashCode(). Now, that’s not necessarily a bad thing, since a quality equals() is independently useful.

But what if we used Collection or List instead? Then our code would be much less sensitive to how equals() and hashCode()
were implemented.

In the past, we were perhaps too dogmatic in recommending the use of Set. Now? I guess we’re happy to let you guys decide.
In hindsight, we could have done more to make clear that this was always a viable option.

3.17. One-to-one (first way)

The simplest sort of one-to-one association is almost exactly like a @ManyToOne association, except that it maps to a foreign key
column with a UNIQUE constraint.

33

 Later, we’ll see how to map a one-to-one association to an association table.

A one-to-one association must be annotated @OneToOne:

@Entity
class Author {
 @Id @GeneratedValue
 Long id;

 @OneToOne(optional=false, fetch=LAZY)
 Person author;

 ...
}

Here, the Author table has a foreign key column holding the identifier of the associated Publisher.

 A one-to-one association often models a "type of" relationship. In our example, an Author is a type of Person. An
alternative—and often more natural—way to represent "type of" relationships in Java is via entity class
inheritance.

We can make this association bidirectional by adding a reference back to the Author in the Person entity:

@Entity
class Person {
 @Id @GeneratedValue
 Long id;

 @OneToOne(mappedBy = Author_.PERSON)
 Author author;

 ...
}

Person.author is the unowned sure, because it’s the side marked mappedBy.

Lazy fetching for one-to-one associations

Notice that we did not declare the unowned end of the association fetch=LAZY. That’s because:

1. not every Person has an associated Author, and
2. the foreign key is held in the table mapped by Author, not in the table mapped by Person.

Therefore, Hibernate can’t tell if the reference from Person to Author is null without fetching the associated Author.

On the other hand, if every Person was an Author, that is, if the association were non-optional, we would not have to consider
the possibility of null references, and we would map it like this:

@OneToOne(optional=false, mappedBy = Author_.PERSON, fetch=LAZY)
Author author;

This is not the only sort of one-to-one association.

3.18. One-to-one (second way)

An arguably more elegant way to represent such a relationship is to share a primary key between the two tables.

To use this approach, the Author class must be annotated like this:

@Entity
class Author {
 @Id
 Long id;

 @OneToOne(optional=false, fetch=LAZY)
 @MapsId

34

 Person author;

 ...
}

Notice that, compared with the previous mapping:

• the @Id attribute is no longer a @GeneratedValue and,
• instead, the author association is annotated @MapsId.

This lets Hibernate know that the association to Person is the source of primary key values for Author.

Here, there’s no extra foreign key column in the Author table, since the id column holds the identifier of Person. That is, the primary
key of the Author table does double duty as the foreign key referring to the Person table.

The Person class doesn’t change. If the association is bidirectional, we annotate the unowned side @OneToOne(mappedBy =
Author_.PERSON) just as before.

3.19. Many-to-many

A unidirectional many-to-many association is represented as a collection-valued attribute. It always maps to a separate association
table in the database.

It tends to happen that a many-to-many association eventually turns out to be an entity in disguise.

 Suppose we start with a nice clean many-to-many association between Author and Book. Later on, it’s quite likely
that we’ll discover some additional information which comes attached to the association, so that the association
table needs some extra columns.

For example, imagine that we needed to report the percentage contribution of each author to a book. That
information naturally belongs to the association table. We can’t easily store it as an attribute of Book, nor as an
attribute of Author.

When this happens, we need to change our Java model, usually introducing a new entity class which maps the
association table directly. In our example, we might call this entity something like BookAuthorship, and it would
have @OneToMany associations to both Author and Book, along with the contribution attribute.

We can evade the disruption occasioned by such "discoveries" by simply avoiding the use of @ManyToMany right
from the start. There’s little downside to representing every—or at least almost every—logical many-to-many
association using an intermediate entity.

A many-to-many association must be annotated @ManyToMany:

@Entity
class Book {
 @Id @GeneratedValue
 Long id;

 @ManyToMany
 Set<Author> authors;

 ...
}

If the association is bidirectional, we add a very similar-looking attribute to Book, but this time we must specify mappedBy to indicate
that this is the unowned side of the association:

@Entity
class Book {
 @Id @GeneratedValue
 Long id;

 @ManyToMany(mappedBy=Author_.BOOKS)
 Set<Author> authors;

 ...
}

Remember, if we wish to the modify the collection we must change the owning side.

35

We’ve again used Sets to represent the association. As before, we have the option to use Collection or List. But in this case it does
make a difference to the semantics of the association.

 A many-to-many association represented as a Collection or List may contain duplicate elements. However, as
before, the order of the elements is not persistent. That is, the collection is a bag, not a set.

3.20. Collections of basic values and embeddable objects

We’ve now seen the following kinds of entity attribute:

Kind of entity attribute Kind of
reference

Multiplicity Examples

Single-valued attribute of basic type Non-entity At most one @Basic String name

Single-valued attribute of embeddable
type

Non-entity At most one @Embedded Name name

Single-valued association Entity At most one @ManyToOne Publisher publisher
@OneToOne Person person

Many-valued association Entity Zero or more @OneToMany Set<Book> books
@ManyToMany Set<Author> authors

Scanning this taxonomy, you might ask: does Hibernate have multivalued attributes of basic or embeddable type?

Well, actually, we’ve already seen that it does, at least in two special cases. So first, lets recall that JPA treats byte[] and char[]
arrays as basic types. Hibernate persists a byte[] or char[] array to a VARBINARY or VARCHAR column, respectively.

But in this section we’re really concerned with cases other than these two special cases. So then, apart from byte[] and char[], does
Hibernate have multivalued attributes of basic or embeddable type?

And the answer again is that it does. Indeed, there are two different ways to handle such a collection, by mapping it:

• to a column of SQL ARRAY type (assuming the database has an ARRAY type), or
• to a separate table.

So we may expand our taxonomy with:

Kind of entity attribute Kind of
reference

Multiplicity Examples

byte[] and char[] arrays Non-entity Zero or more byte[] image
char[] text

Collection of basic-typed elements Non-entity Zero or more @Array String[] names
@ElementCollection Set<String> names

Collection of embeddable elements Non-entity Zero or more @ElementCollection Set<Name> names

There’s actually two new kinds of mapping here: @Array mappings, and @ElementCollection mappings.

 These sorts of mappings are overused.

There are situations where we think it’s appropriate to use a collection of basic-typed values in our entity class.
But such situations are rare. Almost every many-valued relationship should map to a foreign key association
between separate tables. And almost every table should be mapped by an entity class.

The features we’re about to meet in the next two subsections are used much more often by beginners than they’re
used by experts. So if you’re a beginner, you’ll save yourself same hassle by staying away from these features for
now.

We’ll talk about @Array mappings first.

36

3.21. Collections mapped to SQL arrays

Let’s consider a calendar event which repeats on certain days of the week. We might represent this in our Event entity as an attribute
of type DayOfWeek[] or List<DayOfWeek>. Since the number of elements of this array or list is upper bounded by 7, this is a
reasonable case for the use of an ARRAY-typed column. It’s hard to see much value in storing this collection in a separate table.

Learning to not hate SQL arrays

For a long time, we thought arrays were a kind of weird and warty thing to add to the relational model, but recently we’ve
come to realize that this view was overly closed-minded. Indeed, we might choose to view SQL ARRAY types as a generalization
of VARCHAR and VARBINARY to generic "element" types. And from this point of view, SQL arrays look quite attractive, at least for
certain problems. If we’re comfortable mapping byte[] to VARBINARY(255), why would we shy away from mapping
DayOfWeek[] to TINYINT ARRAY[7]?

Unfortunately, JPA doesn’t define a standard way to map SQL arrays, but here’s how we can do it in Hibernate:

@Entity
class Event {
 @Id @GeneratedValue
 Long id;
 ...
 @Array(length=7)
 DayOfWeek[] daysOfWeek; // stored as a SQL ARRAY type
 ...
}

The @Array annotation is optional, but it’s important to limit the amount of storage space the database allocates to the ARRAY
column.

 Now for the gotcha: not every database has a SQL ARRAY type, and some that do have an ARRAY type don’t allow it
to be used as a column type.

In particular, neither DB2 nor SQL Server have array-typed columns. On these databases, Hibernate falls back to
something much worse: it uses Java serialization to encode the array to a binary representation, and stores the
binary stream in a VARBINARY column. Quite clearly, this is terrible. You can ask Hibernate to do something slightly
less terrible by annotating the attribute @JdbcTypeCode(SqlTypes.JSON), so that the array is serialized to JSON
instead of binary format. But at this point it’s better to just admit defeat and use an @ElementCollection instead.

Alternatively, we could store this array or list in a separate table.

3.22. Collections mapped to a separate table

JPA does define a standard way to map a collection to an auxiliary table: the @ElementCollection annotation.

@Entity
class Event {
 @Id @GeneratedValue
 Long id;
 ...
 @ElementCollection
 DayOfWeek[] daysOfWeek; // stored in a dedicated table
 ...
}

Actually, we shouldn’t use an array here, since array types can’t be proxied, and so the JPA specification doesn’t even say they’re
supported. Instead, we should use Set, List, or Map.

@Entity
class Event {
 @Id @GeneratedValue
 Long id;
 ...
 @ElementCollection
 List<DayOfWeek> daysOfWeek; // stored in a dedicated table
 ...
}

37

Here, each collection elements are stored as separate rows of the auxiliary table. By default, this table has the following definition:

create table Event_daysOfWeek (
 Event_id bigint not null,
 daysOfWeek tinyint check (daysOfWeek between 0 and 6),
 daysOfWeek_ORDER integer not null,
 primary key (Event1_id, daysOfWeek_ORDER)
)

Which is fine, but it’s still a mapping we prefer to avoid.

 @ElementCollection is one of our least-favorite features of JPA. Even the name of the annotation is bad.

The code above results in a table with three columns:

• a foreign key of the Event table,
• a TINYINT encoding the enum, and
• an INTEGER encoding the ordering of elements in the array.

Instead of a surrogate primary key, it has a composite key comprising the foreign key of Event and the order
column.

When—inevitably—we find that we need to add a fourth column to that table, our Java code must change
completely. Most likely, we’ll realize that we need to add a separate entity after all. So this mapping isn’t very
robust in the face of minor changes to our data model.

There’s much more we could say about "element collections", but we won’t say it, because we don’t want to hand you the gun you’ll
shoot your foot with.

3.23. Summary of annotations

Let’s pause to remember the annotations we’ve met so far.

Table 15. Declaring entities and embeddable types

Annotation Purpose JPA-standard

@Entity Declare an entity class ✔

@MappedSuperclass Declare a non-entity class with mapped attributes inherited by an entity ✔

@Embeddable Declare an embeddable type ✔

@IdClass declare the identifier class for an entity with multiple @Id attributes ✔

Table 16. Declaring basic attributes

Annotation Purpose JPA-standard

@Id Declare a basic-typed identifier attribute ✔

@Version Declare a version attribute ✔

@Basic Declare a basic attribute Default ✔

@EmbeddedId Declare an embeddable-typed identifier attribute ✔

@Embedded Declare an embeddable-typed attribute Inferred ✔

@Enumerated Declare an enum-typed attribute and specify how it is encoded Inferred ✔

@Array Declare that an attribute maps to a SQL ARRAY, and specify the length Inferred ✖

@ElementCollection Declare that a collection is mapped to a dedicated table ✔

38

Table 17. Converters and compositional basic types

Annotation Purpose JPA-standard

@Converter Register an AttributeConverter ✔

@Convert Apply a converter to an attribute ✔

@JavaType Explicitly specify an implementation of JavaType for a basic attribute ✖

@JdbcType Explicitly specify an implementation of JdbcType for a basic attribute ✖

@JdbcTypeCode Explicitly specify a JDBC type code used to determine the JdbcType for a basic attribute ✖

@JavaTypeRegistration Register a JavaType for a given Java type ✖

@JdbcTypeRegistration Register a JdbcType for a given JDBC type code ✖

Table 18. System-generated identifiers

Annotation Purpose JPA-standard

@GeneratedValue Specify that an identifier is system-generated ✔

@SequenceGenerator Define an id generated backed by on a database sequence ✔

@TableGenerator Define an id generated backed by a database table ✔

@IdGeneratorType Declare an annotation that associates a custom Generator with each @Id attribute it
annotates

✖

@ValueGenerationType Declare an annotation that associates a custom Generator with each @Basic attribute it
annotates

✖

Table 19. Declaring entity associations

Annotation Purpose JPA-standard

@ManyToOne Declare the single-valued side of a many-to-one association (the owning side) ✔

@OneToMany Declare the many-valued side of a many-to-one association (the unowned side) ✔

@ManyToMany Declare either side of a one-to-one association ✔

@OneToOne Declare either side of a one-to-one association ✔

@MapsId Declare that the owning side of a @OneToOne association maps the primary key column ✔

Phew! That’s already a lot of annotations, and we have not even started with the annotations for O/R mapping!

3.24. equals() and hashCode()

Entity classes should override equals() and hashCode(), especially when associations are represented as sets.

People new to Hibernate or JPA are often confused by exactly which fields should be included in the hashCode(). Even people with
plenty of experience often argue quite religiously that one or another approach is the only right way. The truth is, there’s no unique
right way to do it, but there are some constraints. So please keep the following principles in mind:

• You should not include a mutable field in the hashcode, since that would require rehashing every collection containing the entity
whenever the field is mutated.

• It’s not completely wrong to include a generated identifier (surrogate key) in the hashcode, but since the identifier is not
generated until the entity instance is made persistent, you must take great care to not add it to any hashed collection before the
identifier is generated. We therefore advise against including any database-generated field in the hashcode.

It’s OK to include any immutable, non-generated field in the hashcode.

39

 We therefore recommend identifying a natural key for each entity, that is, a combination of fields that uniquely
identifies an instance of the entity, from the perspective of the data model of the program. The natural key should
correspond to a unique constraint on the database, and to the fields which are included in equals() and
hashCode().

@Entity
class Book {

 @Id @GeneratedValue
 Long id;

 @NaturalId
 @Basic(optional=false)
 String isbn;

 ...

 @Override
 public boolean equals(Object other) {
 return other instanceof Book
 && ((Book) other).isbn.equals(isbn);
 }
 @Override
 public int hashCode() {
 return isbn.hashCode();
 }
}

That said, an implementation of equals() and hashCode() based on the generated identifier of the entity can work if you’re careful.

40

Chapter 4. Object/relational mapping

Given a domain model—that is, a collection of entity classes decorated with all the fancy annotations we just met in the previous
chapter—Hibernate will happily go away and infer a complete relational schema, and even export it to your database if you ask
politely.

The resulting schema will be entirely sane and reasonable, though if you look closely, you’ll find some flaws. For example, every
VARCHAR column will have the same length, VARCHAR(255).

But the process I just described—which we call top down mapping—simply doesn’t fit the most common scenario for the use of O/R
mapping. It’s only rarely that the Java classes precede the relational schema. Usually, we already have a relational schema, and
we’re constructing our domain model around the schema. This is called bottom up mapping.

 Developers often refer to a pre-existing relational database as "legacy" data. This tends to conjure images of bad
old "legacy apps" written in COBOL or something. But legacy data is valuable, and learning to work with it is
important.

Especially when mapping bottom up, we often need to customize the inferred object/relational mappings. This is a somewhat
tedious topic, and so we don’t want to spend too many words on it. Instead, we’ll quickly skim the most important mapping
annotations.

Hibernate SQL case convention

Computers have had lowercase letters for rather a long time now. Most developers learned long ago that text written in
MixedCase, camelCase, or even snake_case is easier to read than text written in SHOUTYCASE. This is just as true of SQL as it
is of any other language.

Therefore, for over twenty years, the convention on the Hibernate project has been that:

• query language identifiers are written in lowercase,
• table names are written in MixedCase, and
• column names are written in camelCase.

That is to say, we simply adopted Java’s excellent conventions and applied them to SQL.

Now, there’s no way we can force you to follow this convention, even if we wished to. Hell, you can easily write a
PhysicalNamingStrategy which makes table and column names ALL UGLY AND SHOUTY LIKE THIS IF YOU PREFER. But, by
default, it’s the convention Hibernate follows, and it’s frankly a pretty reasonable one.

4.1. Mapping entity inheritance hierarchies

In Entity class inheritance we saw that entity classes may exist within an inheritance hierarchy. There’s three basic strategies for
mapping an entity hierarchy to relational tables. Let’s put them in a table, so we can more easily compare the points of difference
between them.

Table 20. Entity inheritance mapping strategies

Strategy Mapping Polymorphic
queries

Constraints Normalization When to use it

SINGLE_TABLE Map every class in
the hierarchy to the
same table, and
uses the value of a
discriminator
column to
determine which
concrete class each
row represents.

To retrieve
instances of a given
class, we only need
to query the one
table.

Attributes declared
by subclasses map
to columns without
NOT NULL
constraints. Ὀ�

Any association
may have a FOREIGN
KEY constraint. ᾑ�

Subclass data is
denormalized. ᾝ�

Works well when
subclasses declare
few or no additional
attributes.

41

Strategy Mapping Polymorphic
queries

Constraints Normalization When to use it

JOINED Map every class in
the hierarchy to a
separate table, but
each table only
maps the attributes
declared by the
class itself.

Optionally, a
discriminator
column may be
used.

To retrieve
instances of a given
class, we must JOIN
the table mapped
by the class with:

• all tables
mapped by its
superclasses
and

• all tables
mapped by its
subclasses.

Any attribute may
map to a column
with a NOT NULL
constraint. ᾑ�

Any association
may have a FOREIGN
KEY constraint. ᾑ�

The tables are
normalized. ᾑ�

The best option
when we care a lot
about constraints
and normalization.

TABLE_PER_CLASS Map every concrete
class in the
hierarchy to a
separate table, but
denormalize all
inherited attributes
into the table.

To retrieve
instances of a given
class, we must take
a UNION over the
table mapped by
the class and the
tables mapped by
its subclasses.

Associations
targeting a
superclass cannot
have a
corresponding
FOREIGN KEY
constraint in the
database. Ὀ�Ὀ�

Any attribute may
map to a column
with a NOT NULL
constraint. ᾑ�

Superclass data is
denormalized. ᾝ�

Not very popular.

From a certain
point of view,
competes with
@MappedSuperclass.

The three mapping strategies are enumerated by InheritanceType. We specify an inheritance mapping strategy using the
@Inheritance annotation.

For mappings with a discriminator column, we should:

• specify the discriminator column name and type by annotating the root entity @DiscriminatorColumn, and
• specify the values of this discriminator by annotating each entity in the hierarchy @DiscriminatorValue.

For single table inheritance we always need a discriminator:

@Entity
@DiscriminatorColumn(discriminatorType=CHAR, name="kind")
@DiscriminatorValue('P')
class Person { ... }

@Entity
@DiscriminatorValue('A')
class Author { ... }

We don’t need to explicitly specify @Inheritance(strategy=SINGLE_TABLE), since that’s the default.

For JOINED inheritance we don’t need a discriminator:

@Entity
@Inheritance(strategy=JOINED)
class Person { ... }

@Entity
class Author { ... }

 However, we can add a discriminator column if we like, and in that case the generated SQL for polymorphic
queries will be slightly simpler.

Similarly, for TABLE_PER_CLASS inheritance we have:

@Entity
@Inheritance(strategy=TABLE_PER_CLASS)

42

class Person { ... }

@Entity
class Author { ... }

 Hibernate doesn’t allow discriminator columns for TABLE_PER_CLASS inheritance mappings, since they would
make no sense, and offer no advantage.

Notice that in this last case, a polymorphic association like:

@ManyToOne Person person;

is a bad idea, since it’s impossible to create a foreign key constraint that targets both mapped tables.

4.2. Mapping to tables

The following annotations specify exactly how elements of the domain model map to tables of the relational model:

Table 21. Annotations for mapping tables

Annotation Purpose

@Table Map an entity class to its primary table

@SecondaryTable Define a secondary table for an entity class

@JoinTable Map a many-to-many or many-to-one association to its association table

@CollectionTable Map an @ElementCollection to its table

The first two annotations are used to map an entity to its primary table and, optionally, one or more secondary tables.

4.3. Mapping entities to tables

By default, an entity maps to a single table, which may be specified using @Table:

@Entity
@Table(name="People")
class Person { ... }

However, the @SecondaryTable annotation allows us to spread its attributes across multiple secondary tables.

@Entity
@Table(name="Books")
@SecondaryTable(name="Editions")
class Book { ... }

The @Table annotation can do more than just specify a name:

Table 22. @Table annotation members

Annotation member Purpose

name The name of the mapped table

schema Ὀ� The schema to which the table belongs

catalog Ὀ� The catalog to which the table belongs

uniqueConstraints One or more @UniqueConstraint annotations declaring multi-column unique constraints

indexes One or more @Index annotations each declaring an index

43

 It only makes sense to explicitly specify the schema in annotations if the domain model is spread across multiple
schemas.

Otherwise, it’s a bad idea to hardcode the schema (or catalog) in a @Table annotation. Instead:

• set the configuration property hibernate.default_schema (or hibernate.default_catalog), or
• simply specify the schema in the JDBC connection URL.

The @SecondaryTable annotation is even more interesting:

Table 23. @SecondaryTable annotation members

Annotation member Purpose

name The name of the mapped table

schema Ὀ� The schema to which the table belongs

catalog Ὀ� The catalog to which the table belongs

uniqueConstraints One or more @UniqueConstraint annotations declaring multi-column unique constraints

indexes One or more @Index annotations each declaring an index

pkJoinColumns One or more @PrimaryKeyJoinColumn annotations, specifying primary key column mappings

foreignKey An @ForeignKey annotation specifying the name of the FOREIGN KEY constraint on the
@PrimaryKeyJoinColumns

 Using @SecondaryTable on a subclass in a SINGLE_TABLE entity inheritance hierarchy gives us a sort of mix of
SINGLE_TABLE with JOINED inheritance.

4.4. Mapping associations to tables

The @JoinTable annotation specifies an association table, that is, a table holding foreign keys of both associated entities. This
annotation is usually used with @ManyToMany associations:

@Entity
class Book {
 ...

 @ManyToMany
 @JoinTable(name="BooksAuthors")
 Set<Author> authors;

 ...
}

But it’s even possible to use it to map a @ManyToOne or @OneToOne association to an association table.

@Entity
class Book {
 ...

 @ManyToOne(fetch=LAZY)
 @JoinTable(name="BookPublisher")
 Publisher publisher;

 ...
}

Here, there should be a UNIQUE constraint on one of the columns of the association table.

@Entity
class Author {
 ...

44

 @OneToOne(optional=false, fetch=LAZY)
 @JoinTable(name="AuthorPerson")
 Person author;

 ...
}

Here, there should be a UNIQUE constraint on both columns of the association table.

Table 24. @JoinTable annotation members

Annotation member Purpose

name The name of the mapped association table

schema Ὀ� The schema to which the table belongs

catalog Ὀ� The catalog to which the table belongs

uniqueConstraints One or more @UniqueConstraint annotations declaring multi-column unique constraints

indexes One or more @Index annotations each declaring an index

joinColumns One or more @JoinColumn annotations, specifying foreign key column mappings to the table of the owning
side

inverseJoinColumns One or more @JoinColumn annotations, specifying foreign key column mappings to the table of the unowned
side

foreignKey An @ForeignKey annotation specifying the name of the FOREIGN KEY constraint on the joinColumnss

inverseForeignKey An @ForeignKey annotation specifying the name of the FOREIGN KEY constraint on the inverseJoinColumnss

To better understand these annotations, we must first discuss column mappings in general.

4.5. Mapping to columns

These annotations specify how elements of the domain model map to columns of tables in the relational model:

Table 25. Annotations for mapping columns

Annotation Purpose

@Column Map an attribute to a column

@JoinColumn Map an association to a foreign key column

@PrimaryKeyJoinCol
umn

Map the primary key used to join a secondary table with its primary, or a subclass table in JOINED inheritance with
its root class table

@OrderColumn Specifies a column that should be used to maintain the order of a List.

@MapKeyColumn Specified a column that should be used to persist the keys of a Map.

We use the @Column annotation to map basic attributes.

4.6. Mapping basic attributes to columns

The @Column annotation is not only useful for specifying the column name.

Table 26. @Column annotation members

Annotation member Purpose

name The name of the mapped column

table The name of the table to which this column belongs

45

Annotation member Purpose

length The length of a VARCHAR, CHAR, or VARBINARY column type

precision The decimal digits of precision of a FLOAT, DECIMAL, NUMERIC, or TIME, or TIMESTAMP column type

scale The scale of a DECIMAL or NUMERIC column type, the digits of precision that occur to the right of the decimal
point

unique Whether the column has a UNIQUE constraint

nullable Whether the column has a NOT NULL constraint

insertable Whether the column should appear in generated SQL INSERT statements

updatable Whether the column should appear in generated SQL UPDATE statements

columnDefinition Ὀ� A DDL fragment that should be used to declare the column

 We no longer recommend the use of columnDefinition since it results in unportable DDL. Hibernate has much
better ways to customize the generated DDL using techniques that result in portable behavior across different
databases.

Here we see four different ways to use the @Column annotation:

@Entity
@Table(name="Books")
@SecondaryTable(name="Editions")
class Book {
 @Id @GeneratedValue
 @Column(name="bookId") // customize column name
 Long id;

 @Column(length=100, nullable=false) // declare column as VARCHAR(100) NOT NULL
 String title;

 @Column(length=17, unique=true, nullable=false) // declare column as VARCHAR(17) NOT NULL UNIQUE
 String isbn;

 @Column(table="Editions", updatable=false) // column belongs to the secondary table, and is never updated
 int edition;
}

We don’t use @Column to map associations.

4.7. Mapping associations to foreign key columns

The @JoinColumn annotation is used to customize a foreign key column.

Table 27. @JoinColumn annotation members

Annotation member Purpose

name The name of the mapped foreign key column

table The name of the table to which this column belongs

referencedColumnName The name of the column to which the mapped foreign key column refers

unique Whether the column has a UNIQUE constraint

nullable Whether the column has a NOT NULL constraint

insertable Whether the column should appear in generated SQL INSERT statements

updatable Whether the column should appear in generated SQL UPDATE statements

46

Annotation member Purpose

columnDefinition Ὀ� A DDL fragment that should be used to declare the column

foreignKey A @ForeignKey annotation specifying the name of the FOREIGN KEY constraint

A foreign key column doesn’t necessarily have to refer to the primary key of the referenced table. It’s quite acceptable for the foreign
key to refer to any other unique key of the referenced entity, even to a unique key of a secondary table.

Here we see how to use @JoinColumn to define a @ManyToOne association mapping a foreign key column which refers to the
@NaturalId of Book:

@Entity
@Table(name="Items")
class Item {
 ...

 @ManyToOne(optional=false) // implies nullable=false
 @JoinColumn(name = "bookIsbn", referencedColumnName = "isbn", // a reference to a non-PK column
 foreignKey = @ForeignKey(name="ItemsToBooksBySsn")) // supply a name for the FK constraint
 Book book;

 ...
}

In case this is confusing:

• bookIsbn is the name of the foreign key column in the Items table,
• it refers to a unique key isbn in the Books table, and
• it has a foreign key constraint named ItemsToBooksBySsn.

Note that the foreignKey member is completely optional and only affects DDL generation.

 If you don’t supply an explicit name using @ForeignKey, Hibernate will generate a quite ugly name. The reason for
this is that the maximum length of foreign key names on some databases is extremely constrained, and we need
to avoid collisions. To be fair, this is perfectly fine if you’re only using the generated DDL for testing.

For composite foreign keys we might have multiple @JoinColumn annotations:

@Entity
@Table(name="Items")
class Item {
 ...

 @ManyToOne(optional=false)
 @JoinColumn(name = "bookIsbn", referencedColumnName = "isbn")
 @JoinColumn(name = "bookPrinting", referencedColumnName = "printing")
 Book book;

 ...
}

If we need to specify the @ForeignKey, this starts to get a bit messy:

@Entity
@Table(name="Items")
class Item {
 ...

 @ManyToOne(optional=false)
 @JoinColumns(value = {@JoinColumn(name = "bookIsbn", referencedColumnName = "isbn"),
 @JoinColumn(name = "bookPrinting", referencedColumnName = "printing")},
 foreignKey = @ForeignKey(name="ItemsToBooksBySsn"))
 Book book;

 ...
}

47

For associations mapped to a @JoinTable, fetching the association requires two joins, and so we must declare the @JoinColumns
inside the @JoinTable annotation:

@Entity
class Book {
 @Id @GeneratedValue
 Long id;

 @ManyToMany
 @JoinTable(joinColumns=@JoinColumn(name="bookId"),
 inverseJoinColumns=@joinColumn(name="authorId"),
 foreignKey=@ForeignKey(name="BooksToAuthors"))
 Set<Author> authors;

 ...
}

Again, the foreignKey member is optional.

4.8. Mapping primary key joins between tables

The @PrimaryKeyJoinColumn is a special-purpose annotation for mapping:

• the primary key column of a @SecondaryTable—which is also a foreign key referencing the primary table, or
• the primary key column of the primary table mapped by a subclass in a JOINED inheritance hierarchy—which is also a foreign key

referencing the primary table mapped by the root entity.

Table 28. @PrimaryKeyJoinColumn annotation members

Annotation member Purpose

name The name of the mapped foreign key column

referencedColumnName The name of the column to which the mapped foreign key column refers

columnDefinition Ὀ� A DDL fragment that should be used to declare the column

foreignKey A @ForeignKey annotation specifying the name of the FOREIGN KEY constraint

When mapping a subclass table primary key, we place the @PrimaryKeyJoinColumn annotation on the entity class:

@Entity
@Table(name="People")
@Inheritance(strategy=JOINED)
class Person { ... }

@Entity
@Table(name="Authors")
@PrimaryKeyJoinColumn(name="personId") // the primary key of the Authors table
class Author { ... }

But to map a secondary table primary key, the @PrimaryKeyJoinColumn annotation must occur inside the @SecondaryTable
annotation:

@Entity
@Table(name="Books")
@SecondaryTable(name="Editions",
 pkJoinColumns = @PrimaryKeyJoinColumn(name="bookId")) // the primary key of the Editions table
class Book {
 @Id @GeneratedValue
 @Column(name="bookId") // the name of the primary key of the Books table
 Long id;

 ...
}

48

4.9. Column lengths and adaptive column types

Hibernate automatically adjusts the column type used in generated DDL based on the column length specified by the @Column
annotation. So we don’t usually need to explicitly specify that a column should be of type TEXT or CLOB—or worry about the parade
of TINYTEXT, MEDIUMTEXT, TEXT, LONGTEXT types on MySQL—because Hibernate will automatically select one of those types if required
to accommodate a string of the length we specify.

The constant values defined in the class org.hibernate.Length are very helpful here:

Table 29. Predefined column lengths

Constant Value Description

DEFAULT 255 The default length of a VARCHAR or VARBINARY column when none is explicitly specified

LONG 32600 The largest column length for a VARCHAR or VARBINARY that is allowed on every database Hibernate
supports

LONG16 32767 The maximum length that can be represented using 16 bits (but this length is too large for a VARCHAR or
VARBINARY column on for some database)

LONG32 2147483647 The maximum length for a Java string

We can use these constants in the @Column annotation:

@Column(length=LONG)
String text;

@Column(length=LONG32)
byte[] binaryData;

This is usually all you need to do to make use of large object types in Hibernate.

4.10. LOBs

JPA provides a @Lob annotation which specifies that a field should be persisted as a BLOB or CLOB.

Semantics of the @Lob annotation

What the spec actually says is that the field should be persisted

…as a large object to a database-supported large object type.

It’s quite unclear what this means, and the spec goes on to say that

…the treatment of the Lob annotation is provider-dependent…

which doesn’t help much.

Hibernate interprets this annotation in what we think is the most reasonable way. In Hibernate, an attribute annotated @Lob will be
written to JDBC using the setClob() or setBlob() method of PreparedStatement, and will be read from JDBC using the getClob() or
getBlob() method of ResultSet.

Now, the use of these JDBC methods is usually unnecessary! JDBC drivers are perfectly capable of converting between String and
CLOB or between byte[] and BLOB. So unless you specifically need to use these JDBC LOB APIs, you don’t need the @Lob annotation.

Instead, as we just saw in Column lengths and adaptive column types, all you need is to specify a large enough column length to
accommodate the data you plan to write to that column.

49

 Unfortunately, the driver for PostgreSQL doesn’t allow BYTEA or TEXT columns to be read via the JDBC LOB APIs.

This limitation of the Postgres driver has resulted in a whole cottage industry of bloggers and stackoverflow
question-answerers recommending convoluted ways to hack the Hibernate Dialect for Postgres to allow an
attribute annotated @Lob to be written using setString() and read using getString().

But simply removing the @Lob annotation has exactly the same effect.

Conclusion:

• on PostgreSQL, @Lob always means the OID type,
• @Lob should never be used to map columns of type BYTEA or TEXT, and
• please don’t believe everything you read on stackoverflow.

Finally, as an alternative, Hibernate lets you declare an attribute of type java.sql.Blob or java.sql.Clob.

@Entity
class Book {
 ...
 Clob text;
 Blob coverArt;

}

The advantage is that a java.sql.Clob or java.sql.Blob can in principle index up to 263 characters or bytes, much more data than
you can fit in a Java String or byte[] array (or in your computer).

To assign a value to these fields, we’ll need to use a LobHelper. We can get one from the Session:

LobHelper helper = session.getLobHelper();
book.text = helper.createClob(text);
book.coverArt = helper.createBlob(image);

In principle, the Blob and Clob objects provide efficient ways to read or stream LOB data from the server.

Book book = session.find(Book.class, bookId);
String text = book.text.getSubString(1, textLength);
InputStream bytes = book.images.getBinaryStream();

Of course, the behavior here depends very much on the JDBC driver, and so we really can’t promise that this is a sensible thing to do
on your database.

4.11. Mapping embeddable types to UDTs or to JSON

There’s a couple of alternative ways to represent an embeddable type on the database side.

Embeddables as UDTs

First, a really nice option, at least in the case of Java record types, and for databases which support user-defined types (UDTs), is to
define a UDT which represents the record type. Hibernate 6 makes this really easy. Just annotate the record type, or the attribute
which holds a reference to it, with the new @Struct annotation:

@Embeddable
@Struct(name="PersonName")
record Name(String firstName, String middleName, String lastName) {}

@Entity
class Person {
 ...
 Name name;
 ...
}

This results in the following UDT:

create type PersonName as (firstName varchar(255), middleName varchar(255), lastName varchar(255))

50

And the name column of the Author table will have the type PersonName.

Embeddables to JSON

A second option that’s available is to map the embeddable type to a JSON (or JSONB) column. Now, this isn’t something we would
exactly recommend if you’re defining a data model from scratch, but it’s at least useful for mapping pre-existing tables with JSON-
typed columns. Since embeddable types are nestable, we can map some JSON formats this way, and even query JSON properties
using HQL.

 At this time, JSON arrays are not supported!

To map an attribute of embeddable type to JSON, we must annotate the attribute @JdbcTypeCode(SqlTypes.JSON), instead of
annotating the embeddable type. But the embeddable type Name should still be annotated @Embeddable if we want to query its
attributes using HQL.

@Embeddable
record Name(String firstName, String middleName, String lastName) {}

@Entity
class Person {
 ...
 @JdbcTypeCode(SqlTypes.JSON)
 Name name;
 ...
}

We also need to add Jackson or an implementation of JSONB—for example, Yasson—to our runtime classpath. To use Jackson we
could add this line to our Gradle build:

runtimeOnly 'com.fasterxml.jackson.core:jackson-databind:{jacksonVersion}'

Now the name column of the Author table will have the type jsonb, and Hibernate will automatically use Jackson to serialize a Name to
and from JSON format.

4.12. Summary of SQL column type mappings

So, as we’ve seen, there are quite a few annotations that affect the mapping of Java types to SQL column types in DDL. Here we
summarize the ones we’ve just seen in the second half of this chapter, along with some we already mentioned in earlier chapters.

Table 30. Annotations for mapping SQL column types

Annotation Interpretation

@Enumerated Specify how an enum type should be persisted

@Nationalized Use a nationalized character type: NCHAR, NVARCHAR, or NCLOB

@Lob Ὀ� Use JDBC LOB APIs to read and write the annotated attribute

@Array Map a collection to a SQL ARRAY type of the specified length

@Struct Map an embeddable to a SQL UDT with the given name

@TimeZoneStorage Specify how the time zone information should be persisted

@JdbcType or @JdbcTypeCode Use an implementation of JdbcType to map an arbitrary SQL type

In addition, there are some configuration properties which have a global affect on how basic types map to SQL column types:

Table 31. Type mapping settings

Configuration property name Purpose

hibernate.use_nationalized_character_data Enable use of nationalized character types by default

hibernate.type.preferred_boolean_jdbc_type Specify the default SQL column type for mapping boolean

51

Configuration property name Purpose

hibernate.type.preferred_uuid_jdbc_type Specify the default SQL column type for mapping UUID

hibernate.type.preferred_duration_jdbc_type Specify the default SQL column type for mapping Duration

hibernate.type.preferred_instant_jdbc_type Specify the default SQL column type for mapping Instant

hibernate.timezone.default_storage Specify the default strategy for storing time zone information

 These are global settings and thus quite clumsy. We recommend against messing with any of these settings unless
you have a really good reason for it.

There’s one more topic we would like to cover in this chapter.

4.13. Mapping to formulas

Hibernate lets us map an attribute of an entity to a SQL formula involving columns of the mapped table. Thus, the attribute is a sort
of "derived" value.

Table 32. Annotations for mapping formulas

Annotation Purpose

@Formula Map an attribute to a SQL formula

@JoinFormula Map an association to a SQL formula

@DiscriminatorFormula Use a SQL formula as the discriminator in single table inheritance.

For example:

@Entity
class Order {
 ...
 @Column(name = "sub_total", scale=2, precision=8)
 BigDecimal subTotal;

 @Column(name = "tax", scale=4, precision=4)
 BigDecimal taxRate;

 @Formula("sub_total * (1.0 + tax)")
 BigDecimal totalWithTax;
 ...
}

52

Chapter 5. Interacting with the database

To interact with the database, that is, to execute queries, or to insert, update, or delete data, we need an instance of one of the
following objects:

• a JPA EntityManager,
• a Hibernate Session, or
• a Hibernate StatelessSession.

The Session interface extends EntityManager, and so the only difference between the two interfaces is that Session offers a few
more operations.

 Actually, in Hibernate, every EntityManager is a Session, and you can narrow it like this:

Session session = entityManager.unwrap(Session.class);

An instance of Session (or of EntityManager) is a stateful session. It mediates the interaction between your program and the
database via a operations on a persistence context.

In this chapter, we’re not going to talk much about StatelessSession. We’ll come back to this very useful API when we talk about
performance. What you need to know for now is that a stateless session doesn’t have a persistence context.

 Still, we should let you know that some people prefer to use StatelessSession everywhere. It’s a simpler
programming model, and lets the developer interact with the database more directly.

Stateful sessions certainly have their advantages, but they’re more difficult to reason about, and when something
goes wrong, the error messages can be more difficult to understand.

5.1. Persistence Contexts

A persistence context is a sort of cache; we sometimes call it the "first-level cache", to distinguish it from the second-level cache. For
every entity instance read from the database within the scope of a persistence context, and for every new entity made persistent
within the scope of the persistence context, the context holds a unique mapping from the identifier of the entity instance to the
instance itself.

Thus, an entity instance may be in one of three states with respect to a given persistence context:

1. transient — never persistent, and not associated with the persistence context,
2. persistent — currently associated with the persistence context, or
3. detached — previously persistent in another session, but not currently associated with this persistence context.

At any given moment, an instance may be associated with at most one persistence context.

The lifetime of a persistence context usually corresponds to the lifetime of a transaction, though it’s possible to have a persistence
context that spans several database-level transactions that form a single logical unit of work.

 A persistence context—that is, a Session or EntityManager—absolutely positively must not be shared between
multiple threads or between concurrent transactions.

If you accidentally leak a session across threads, you will suffer.

Container-managed persistence contexts

In a container environment, the lifecycle of a persistence context scoped to the transaction will usually be managed for you.

53

There are several reasons we like persistence contexts.

1. They help avoid data aliasing: if we modify an entity in one section of code, then other code executing within the same
persistence context will see our modification.

2. They enable automatic dirty checking: after modifying an entity, we don’t need to perform any explicit operation to ask
Hibernate to propagate that change back to the database. Instead, the change will be automatically synchronized with the
database when the session is flushed.

3. They can improve performance by avoiding a trip to the database when a given entity instance is requested repeatedly in a given
unit of work.

4. They make it possible to transparently batch together multiple database operations.

A persistence context also allows us to detect circularities when performing operations on graphs of entities. (Even in a stateless
session, we need some sort of temporary cache of the entity instances we’ve visited while executing a query.)

On the other hand, stateful sessions come with some very important restrictions, since:

• persistence contexts aren’t threadsafe, and can’t be shared across threads, and
• a persistence context can’t be reused across unrelated transactions, since that would break the isolation and atomicity of the

transactions.

Furthermore, a persistence context holds a hard references to all its entities, preventing them from being garbage collected. Thus,
the session must be discarded once a unit of work is complete.

 If you don’t completely understand the previous passage, go back and re-read it until you do. A great deal of
human suffering has resulted from users mismanaging the lifecycle of the Hibernate Session or JPA
EntityManager.

We’ll conclude by noting that whether a persistence context helps or harms the performance of a given unit of work depends greatly
on the nature of the unit of work. For this reason Hibernate provides both stateful and stateless sessions.

5.2. Creating a session

Sticking with standard JPA-defined APIs, we saw how to obtain an EntityManagerFactory in Configuration using JPA XML. It’s quite
unsurprising that we may use this object to create an EntityManager:

EntityManager entityManager = entityManagerFactory.createEntityManager();

When we’re finished with the EntityManager, we should explicitly clean it up:

entityManager.close();

On the other hand, if we’re starting from a SessionFactory, as described in Configuration using Hibernate API, we may use:

Session session = sessionFactory.openSession();

But we still need to clean up:

session.close();

Injecting the EntityManager

If you’re writing code for some sort of container environment, you’ll probably obtain the EntityManager by some sort of
dependency injection. For example, in Java (or Jakarta) EE you would write:

@PersistenceContext EntityManager entityManager;

In Quarkus, injection is handled by CDI:

@Inject EntityManager entityManager;

Outside a container environment, we’ll also have to write code to manage database transactions.

54

5.3. Managing transactions

Using JPA-standard APIs, the EntityTransaction interface allows us to control database transactions. The idiom we recommend is
the following:

EntityManager entityManager = entityManagerFactory.createEntityManager();
EntityTransaction tx = entityManager.getTransaction();
try {
 tx.begin();
 //do some work
 ...
 tx.commit();
}
catch (Exception e) {
 if (tx.isActive()) tx.rollback();
 throw e;
}
finally {
 entityManager.close();
}

Using Hibernate’s native APIs we might write something really similar, but since this sort of code is extremely tedious, we have a
much nicer option:

sessionFactory.inTransaction(session -> {
 //do the work
 ...
});

Container-managed transactions

In a container environment, the container itself is usually responsible for managing transactions. In Java EE or Quarkus, you’ll
probably indicate the boundaries of the transaction using the @Transactional annotation.

5.4. Operations on the persistence context

Of course, the main reason we need an EntityManager is to do stuff to the database. The following important operations let us
interact with the persistence context and schedule modifications to the data:

Table 33. Methods for modifying data and managing the persistence context

Method name and parameters Effect

persist(Object) Make a transient object persistent and schedule a SQL insert statement for later execution

remove(Object) Make a persistent object transient and schedule a SQL delete statement for later execution

merge(Object) Copy the state of a given detached object to a corresponding managed persistent instance and
return the persistent object

detach(Object) Disassociate a persistent object from a session without affecting the database

clear() Empty the persistence context and detach all its entities

flush() Detect changes made to persistent objects association with the session and synchronize the
database state with the state of the session by executing SQL insert, update, and delete
statements

Notice that persist() and remove() have no immediate effect on the database, and instead simply schedule a command for later
execution. Also notice that there’s no update() operation for a stateful session. Modifications are automatically detected when the
session is flushed.

On the other hand, the following operations all result in immediate access to the database:

55

Table 34. Methods for reading and locking data

Method name and parameters Effect

find(Class,Object) Obtain a persistent object given its type and its id

find(Class,Object,LockModeType) Obtain a persistent object given its type and its id, requesting the given optimistic or
pessimistic lock mode

getReference(Class,id) Obtain a reference to a persistent object given its type and its id, without actually loading its
state from the database

getReference(Object) Obtain a reference to a persistent object with the same identity as the given detached instance,
without actually loading its state from the database

refresh(Object) Refresh the persistent state of an object using a new SQL select to retrieve its current state
from the database

refresh(Object,LockModeType) Refresh the persistent state of an object using a new SQL select to retrieve its current state
from the database, requesting the given optimistic or pessimistic lock mode

lock(Object, LockModeType) Obtain an optimistic or pessimistic lock on a persistent object

Any of these operations might throw an exception. Now, if an exception occurs while interacting with the database, there’s no good
way to resynchronize the state of the current persistence context with the state held in database tables.

Therefore, a session is considered to be unusable after any of its methods throws an exception.

 The persistence context is fragile. If you receive an exception from Hibernate, you should immediately close and
discard the current session. Open a new session if you need to, but throw the bad one away first.

Each of the operations we’ve seen so far affects a single entity instance passed as an argument. But there’s a way to set things up so
that an operation will propagate to associated entities.

5.5. Cascading persistence operations

It’s quite often the case that the lifecycle of a child entity is completely dependent on the lifecycle of some parent. This is especially
common for many-to-one and one-to-one associations, though it’s very rare for many-to-many associations.

For example, it’s quite common to make an Order and all its Items persistent in the same transaction, or to delete a Project and its
Filess at once. This sort of relationship is sometimes called a whole/part-type relationship.

Cascading is a convenience which allows us to propagate one of the operations listed in Operations on the persistence context from
a parent to its children. To set up cascading, we specify the cascade member of one of the association mapping annotations, usually
@OneToMany or @OneToOne.

@Entity
class Order {
 ...
 @OneToMany(mappedby=Item_.ORDER,
 // cascade persist(), remove(), and refresh() from Order to Item
 cascade={PERSIST,REMOVE,REFRESH},
 // also remove() orphaned Items
 orphanRemoval=true)
 private Set<Item> items;
 ...
}

Orphan removal indicates that an Item should be automatically deleted if it is removed from the set of items belonging to its parent
Order.

5.6. Proxies and lazy fetching

Our data model is a set of interconnected entities, and in Java our whole dataset would be represented as an enormous
interconnected graph of objects. It’s possible that this graph is disconnected, but more likely it’s connected, or composed of a
relatively small number of connected subgraphs.

Therefore, when we retrieve on object belonging to this graph from the database and instantiate it in memory, we simply can’t

56

recursively retrieve and instantiate all its associated entities. Quite aside from the waste of memory on the VM side, this process
would involve a huge number of round trips to the database server, or a massive multidimensional cartesian product of tables, or
both. Instead, we’re forced to cut the graph somewhere.

Hibernate solves this problem using proxies and lazy fetching. A proxy is an object that masquerades as a real entity or collection,
but doesn’t actually hold any state, because that state has not yet been fetched from the database. When you call a method of the
proxy, Hibernate will detect the call and fetch the state from the database before allowing the invocation to proceed to the real
entity object or collection.

Now for the gotchas:

1. Hibernate will only do this for an entity which is currently associated with a persistence context. Once the session ends, and the
persistence context is cleaned up, the proxy is no longer fetchable, and instead its methods throw the hated
LazyInitializationException.

2. A round trip to the database to fetch the state of a single entity instance is just about the least efficient way to access data. It
almost inevitably leads to the infamous N+1 selects problem we’ll discuss later when we talk about how to optimize association
fetching.

 We’re getting a bit ahead of ourselves here, but let’s quickly mention the general strategy we recommend to
navigate past these gotchas:

• All associations should be set fetch=LAZY to avoid fetching extra data when it’s not needed. As we mentioned
earlier, this setting is not the default for @ManyToOne associations, and must be specified explicitly.

• But strive to avoid writing code which triggers lazy fetching. Instead, fetch all the data you’ll need upfront at
the beginning of a unit of work, using one of the techniques described in Association fetching, usually, using
join fetch in HQL or an EntityGraph.

It’s important to know that some operations which may be performed with an unfetched proxy don’t require fetching its state from
the database. First, we’re always allowed to obtain its identifier:

var pubId = entityManager.find(Book.class, bookId).getPublisher().getId(); // does not fetch publisher

Second, we may create an association to a proxy:

book.setPublisher(entityManager.getReference(Publisher.class, pubId)); // does not fetch publisher

Sometimes it’s useful to test whether a proxy or collection has been fetched from the database. JPA lets us do this using the
PersistenceUnitUtil:

boolean authorsFetched = entityManagerFactory.getPersistenceUnitUtil().isLoaded(book.getAuthors());

Hibernate has a slightly easier way to do it:

boolean authorsFetched = Hibernate.isInitialized(book.getAuthors());

But the static methods of the Hibernate class let us do a lot more, and it’s worth getting a bit familiar them.

Of particular interest are the operations which let us work with unfetched collections without fetching their state from the database.
For example, consider this code:

Book book = session.find(Book.class, bookId); // fetch just the Book, leaving authors unfetched
Author authorRef = session.getReference(Author.class, authorId); // obtain an unfetched proxy
boolean isByAuthor = Hibernate.contains(book.getAuthors(), authorRef); // no fetching

This code fragment leaves both the set book.authors and the proxy authorRef unfetched.

Finally, Hibernate.initialize() is a convenience method that force-fetches a proxy or collection:

Book book = session.find(Book.class, bookId); // fetch just the Book, leaving authors unfetched
Hibernate.initialize(book.getAuthors()); // fetch the Authors

But of course, this code is very inefficient, requiring two trips to the database to obtain data that could in principle be retrieved with
just one query.

It’s clear from the discussion above that we need a way to request that an association be eagerly fetched using a database join, thus
protecting ourselves from the infamous N+1 selects. One way to do that is by passing an EntityGraph to find().

57

5.7. Entity graphs and eager fetching

When an association is mapped fetch=LAZY, it won’t, by default, be fetched when we call the find() method. We may request that
an association be fetched eagerly (immediately) by passing an EntityGraph to find().

The JPA-standard API for this is a bit unwieldy:

var graph = entityManager.createEntityGraph(Book.class);
graph.addSubgraph(Book_.publisher);
Book book = entityManager.find(Book.class, bookId, Map.of(SpecHints.HINT_SPEC_FETCH_GRAPH, graph));

This is untypesafe and unnecessarily verbose. Hibernate has a better way:

var graph = session.createEntityGraph(Book.class);
graph.addSubgraph(Book_.publisher);
Book book = session.byId(Book.class).withFetchGraph(graph).load(bookId);

This code adds a left outer join to our SQL query, fetching the associated Publisher along with the Book.

We may even attach additional nodes to our EntityGraph:

var graph = session.createEntityGraph(Book.class);
graph.addSubgraph(Book_.publisher);
graph.addPluralSubgraph(Book_.authors).addSubgraph(Author_.person);
Book book = session.byId(Book.class).withFetchGraph(graph).load(bookId);

This results in a SQL query with four left outer joins.

 In the code examples above, The classes Book_ and Author_ are generated by the JPA Metamodel Generator we
saw earlier. They let us refer to attributes of our model in a completely type-safe way. We’ll use them again,
below, when we talk about Criteria queries.

JPA specifies that any given EntityGraph may be interpreted in two different ways.

• A fetch graph specifies exactly the associations that should be eagerly loaded. Any association not belonging to the entity graph
is proxied and loaded lazily only if required.

• A load graph specifies that the associations in the entity graph are to be fetched in addition to the associations mapped
fetch=EAGER.

You’re right, the names make no sense. But don’t worry, if you take our advice, and map your associations fetch=LAZY, there’s no
difference between a "fetch" graph and a "load" graph, so the names don’t matter.

 JPA even specifies a way to define named entity graphs using annotations. But the annotation-based API is so
verbose that it’s just not worth using.

5.8. Flushing the session

From time to time, a flush operation is triggered, and the session synchronizes dirty state held in memory—that is, modifications to
the state of entities associated with the persistence context—with persistent state held in the database. Of course, it does this by
executing SQL INSERT, UPDATE, and DELETE statements.

By default, a flush is triggered when:

• the current transaction commits, for example, when Transacion.commit() is called,
• before execution of a query whose result would be affected by the synchronization of dirty state held in memory, or
• when the program directly calls flush().

 Notice that SQL statements are not usually executed synchronously by methods of the Session interface like
persist() and remove(). If synchronous execution of SQL is desired, the StatelessSession allows this.

This behavior can be controlled by explicitly setting the flush mode. For example, to disable flushes that occur before query
execution, call:

entityManager.setFlushMode(FlushModeType.COMMIT);

Hibernate allows greater control over the flush mode than JPA:

58

session.setHibernateFlushMode(FlushMode.MANUAL);

Since flushing is a somewhat expensive operation (the session must dirty-check every entity in the persistence context), setting the
flush mode to COMMIT can occasionally be a useful optimization.

Table 35. Flush modes

Hibernate
FlushMode

JPA
FlushModeType

Interpretation

MANUAL Never flush automatically

COMMIT COMMIT Flush before transaction commit

AUTO AUTO Flush before transaction commit, and before execution of a query whose results might be
affected by modifications held in memory

ALWAYS Flush before transaction commit, and before execution of every query

A second way to reduce the cost of flushing is to load entities in read-only mode:

• Session.setDefaultReadOnly(false) specifies that all entities loaded by a given session should be loaded in read-only mode by
default,

• SelectionQuery.setReadOnly(false) specifies that every entity returned by a given query should be loaded in read-only mode,
and

• Session.setReadOnly(Object, false) specifies that a given entity already loaded by the session should be switched to read-
only mode.

It’s not necessary to dirty-check on entity instance in read-only mode.

5.9. Queries

Hibernate features three complementary ways to write queries:

• the Hibernate Query Language, an extremely powerful superset of JPQL, which abstracts most of the features of modern dialects
of SQL,

• the JPA criteria query API, along with extensions, allowing almost any HQL query to be constructed programmatically via a
typesafe API, and, of course

• for when all else fails, native SQL queries.

5.10. HQL queries

A full discussion of the query language would require just as much text as the rest of this Introduction. Fortunately, HQL is already
described in exhaustive (and exhausting) detail in A guide to Hibernate Query Language 6. It doesn’t make sense to repeat that
information here.

Here we want to see how to execute a query via the Session or EntityManager API. The method we call depends on what kind of
query it is:

• selection queries return a result list, but do not modify the data, but
• mutation queries modify data, and return the number of modified rows.

Selection queries usually start with the keyword select or from, whereas mutation queries begin with the keyword insert, update,
or delete.

Table 36. Executing HQL

Kind Session method EntityManager method Query execution method

Selection createSelectionQuery(String,Class) createQuery(String,Class) getResultList(),
getSingleResult(), or
getSingleResultOrNull()

Mutation createMutationQuery(String) createQuery(String) executeUpdate()

So for the Session API we would write:

59

List<Book> matchingBooks =
 session.createSelectionQuery("from Book where title like :titleSearchPattern", Book.class)
 .setParameter("titleSearchPattern", titleSearchPattern)
 .getResultList();

Or, if we’re sticking to the JPA-standard APIs:

List<Book> matchingBooks =
 entityManager.createQuery("select b from Book b where b.title like :titleSearchPattern", Book.class)
 .setParameter("titleSearchPattern", titleSearchPattern)
 .getResultList();

The only difference between createSelectionQuery() and createQuery() is that createSelectionQuery() throw an exception if
passed an insert, delete, or update.

In the query above, :titleSearchPattern is called a named parameter. We may also identify parameters by a number. These are
called ordinal parameters.

List<Book> matchingBooks =
 session.createSelectionQuery("from Book where title like ?1", Book.class)
 .setParameter(1, titleSearchPattern)
 .getResultList();

When a query has multiple parameters, named parameters tend to be easier to read, even if slightly more verbose.

 Never concatenate user input with HQL and pass the concatenated string to createSelectionQuery(). This would
open up the possibility for an attacker to execute arbitrary code on your database server.

If we’re expecting a query to return a single result, we can use getSingleResult().

Book book =
 session.createSelectionQuery("from Book where isbn = ?1", Book.class)
 .setParameter(1, isbn)
 .getSingleResult();

Or, if we’re expecting it to return at most one result, we can use getSingleResultOrNull().

Book bookOrNull =
 session.createSelectionQuery("from Book where isbn = ?1", Book.class)
 .setParameter(1, isbn)
 .getSingleResultOrNull();

The difference, of course, is that getSingleResult() throws an exception if there’s no matching row in the database, whereas
getSingleResultOrNull() just returns null.

By default, Hibernate dirty checks entities in the persistence context before executing a query, in order to determine if the session
should be flushed. If there are many entities association with the persistence context, then this can be an expensive operation.

To disable this behavior, set the flush mode to COMMIT or MANUAL:

Book bookOrNull =
 session.createSelectionQuery("from Book where isbn = ?1", Book.class)
 .setParameter(1, isbn)
 .setHibernateFlushMode(MANUAL)
 .getSingleResult();

 Setting the flush mode to COMMIT or MANUAL might cause the query to return stale results.

Occasionally we need to build a query at runtime, from a set of optional conditions. For this, JPA offers an API which allows
programmatic construction of a query.

5.11. Criteria queries

Imagine we’re implementing some sort of search screen, where the user of our system is offered several different ways to constrain
the query result set. For example, we might let them search for books by title and/or the author name. Of course, we could construct
a HQL query by string concatenation, but this is a bit fragile, so it’s quite nice to have an alternative.

60

HQL is implemented in terms of criteria objects

Actually, in Hibernate 6, every HQL query is compiled to a criteria query before being translated to SQL. This ensures that the
semantics of HQL and criteria queries are identical.

First we need an object for building criteria queries. Using the JPA-standard APIs, this would be a CriteriaBuilder, and we get it
from the EntityManagerFactory:

CriteriaBuilder builder = entityManagerFactory.getCriteriaBuilder();

But if we have a SessionFactory, we get something much better, a HibernateCriteriaBuilder:

HibernateCriteriaBuilder builder = sessionFactory.getCriteriaBuilder();

The HibernateCriteriaBuilder extends CriteriaBuilder and adds many operations that JPQL doesn’t have.

 If you’re using EntityManagerFactory, don’t despair, you have two perfectly good ways to obtain the
HibernateCriteriaBuilder associated with that factory. Either:

HibernateCriteriaBuilder builder =
 entityManagerFactory.unwrap(SessionFactory.class).getCriteriaBuilder();

Or simply:

HibernateCriteriaBuilder builder =
 (HibernateCriteriaBuilder) entityManagerFactory.getCriteriaBuilder();

We’re ready to create a criteria query.

CriteriaQuery<Book> query = builder.createQuery(Book.class);
Root<Book> book = query.from(Book.class);
Predicate where = builder.conjunction();
if (titlePattern != null) {
 where = builder.and(where, builder.like(book.get(Book_.title), titlePattern));
}
if (namePattern != null) {
 Join<Book,Author> author = book.join(Book_.author);
 where = builder.and(where, builder.like(author.get(Author_.name), namePattern));
}
query.select(book).where(where)
 .orderBy(builder.asc(book.get(Book_.title)));

Here, as before, the classes Book_ and Author_ are generated by Hibernate’s JPA Metamodel Generator.

 Notice that we did not bother treating titlePattern and namePattern as parameters. That’s safe because, by
default, Hibernate automatically and transparently treats strings passed to the CriteriaBuilder as JDBC
parameters.

Execution of a criteria query works almost exactly like execution of HQL.

Table 37. Executing criteria queries

Kind Session method EntityManager method Query execution method

Selection createSelectionQuery(CriteriaQuery) createQuery(CriteriaQuery) getResultList(),
getSingleResult(), or
getSingleResultOrNull()

Mutation createMutationQuery(CriteriaUpdate) or
createQuery(CriteriaDelete)

createQuery(CriteriaUpdate) or
createQuery(CriteriaDelte)

executeUpdate()

For example:

List<Book> matchingBooks =

61

 session.createSelectionQuery(query)
 .getResultList();

Update, insert, and delete queries work similarly:

CriteriaDelete<Book> delete = builder.createCriteriaDelete(Book.class);
Root<Book> book = delete.from(Book.class);
delete.where(builder.lt(builder.year(book.get(Book_.publicationDate)), 2000));
session.createMutationQuery(delete).executeUpdate();

When all else fails, and sometimes even before that, we’re left with the option of writing a query in SQL.

5.12. Native SQL queries

HQL is a powerful language which helps reduce the verbosity of SQL, and significantly increases portability of queries between
databases. But ultimately, the true value of ORM is not in avoiding SQL, but in alleviating the pain involved in dealing with SQL result
sets once we get them back to our Java program. As we said right up front, Hibernate’s generated SQL is meant to be used in
conjunction with handwritten SQL, and native SQL queries are one of the facilities we provide to make that easy.

Table 38. Executing SQL

Kind Session method EntityManager method Query execution method

Selection createNativeQuery(String,Class) createNativeQuery(String,Class) getResultList(),
getSingleResult(), or
getSingleResultOrNull()

Mutation createNativeMutationQuery(String) createNativeQuery(String) executeUpdate()

Stored
procedure

createStoredProcedureCall(String) createStoredProcedureQuery(String) execute()

For the most simple cases, Hibernate can infer the shape of the result set:

Book book =
 session.createNativeQuery("select * from Books where isbn = ?1", Book.class)
 .getSingleResult();

String title =
 session.createNativeQuery("select title from Books where isbn = ?1", String.class)
 .getSingleResult();

However, in general, there isn’t enough information in the JDBC ResultSetMetaData to infer the mapping of columns to entity
objects. So for more complicated cases, you’ll need to use the @SqlResultSetMapping annotation to define a named mapping, and
pass the name to createNativeQuery(). This gets fairly messy, so we don’t want to hurt your eyes by showing you an example of it.

By default, Hibernate doesn’t flush the session before execution of a native query. That’s because the session is unaware of which
modifications held in memory would affect the results of the query.

So if there are any unflushed changes to Books, this query might return stale data:

List<Book> books =
 session.createNativeQuery("select * from Books")
 .getResultList()

There’s two ways to ensure the persistence context is flushed before this query is executed.

Either, we could simply force a flush by set the flush mode to ALWAYS:

List<Book> books =
 session.createNativeQuery("select * from Books")
 .setHibernateFlushMode(ALWAYS)
 .getResultList()

Or, alternatively, we could tell Hibernate which modified state affects the results of the query:

List<Book> books =
 session.createNativeQuery("select * from Books")

62

 .addSynchronizedEntityClass(Book.class)
 .getResultList()

 You can call stored procedures using createStoredProcedureQuery() or createStoredProcedureCall().

5.13. Limits, pagination, and ordering

If a query might return more results than we can handle at one time, we may specify:

• a limit on the maximum number of rows returned, and,
• optionally, an offset, the first row of an ordered result set to return.

 The offset is used to paginate query results.

There’s two ways to add a limit or offset to a HQL or native SQL query:

• using the syntax of the query language itself, for example, offset 10 rows fetch next 20 rows only, or
• using the methods setFirstResult() and setMaxResults() of the SelectionQuery interface.

If the limit or offset is parameterized, the second option is simpler. For example, this:

List<Book> books =
 session.createSelectionQuery("from Book where title like ?1 order by title")
 .setParameter(1, titlePattern)
 .setMaxResults(MAX_RESULTS)
 .getResultList();

is simpler than:

List<Book> books =
 session.createSelectionQuery("from Book where title like ?1 order by title fetch first ?2 rows only")
 .setParameter(1, titlePattern)
 .setParameter(2, MAX_RESULTS)
 .getResultList();

Hibernate’s SelectionQuery has a slightly different way to paginate the query results:

List<Book> books =
 session.createSelectionQuery("from Book where title like ?1 order by title")
 .setParameter(1, titlePattern)
 .setMaxResults(MAX_RESULTS)
 .getResultList();

A closely-related issue is ordering, for which Hibernate ORM 6.3 offers an incubating API.

Unfortunately, there’s no way to do this using JPA’s TypedQuery interface.

Table 39. Methods for query limits, pagination, and ordering

Method name Purpose JPA-standard

setMaxResults() Set a limit on the number of results returned by a query ✔

setFirstResult() Set an offset on the results returned by a query ✔

5.14. Representing projection lists

A projection list is the list of things that a query returns, that is, the list of expressions in the select clause. Since Java has no tuple
types, representing query projection lists in Java has always been a problem for JPA and Hibernate. Traditionally, we’ve just used
Object[] most of the time:

var results =
 session.createSelectionQuery("select isbn, title from Book", Object[].class)
 .getResultList();

for (var result : results) {

63

 var isbn = (String) result[0];
 var title = (String) result[1];
 ...
}

This is really a bit ugly. Java’s record types now offer an interesting alternative:

record IsbnTitle(String isbn, String title) {}

var results =
 session.createSelectionQuery("select isbn, title from Book", IsbnTitle.class)
 .getResultList();

for (var result : results) {
 var isbn = result.isbn();
 var title = result.title();
 ...
}

Notice that we’re able to declare the record right before the line which executes the query.

Now, this is only superficially more typesafe, since the query itself is not checked statically, and so we can’t say it’s objectively
better. But perhaps you find it more aesthetically pleasing. And if we’re going to be passing query results around the system, the use
of a record type is much better.

The criteria query API offers a much more satisfying solution to the problem. Consider the following code:

var builder = sessionFactory.getCriteriaBuilder();
var query = builder.createTupleQuery();
var book = query.from(Book.class);
var bookTitle = book.get(Book_.title);
var bookIsbn = book.get(Book_.isbn);
var bookPrice = book.get(Book_.price);
query.select(builder.tuple(bookTitle, bookIsbn, bookPrice));
var resultList = session.createSelectionQuery(query).getResultList();
for (var result: resultList) {
 String title = result.get(bookTitle);
 String isbn = result.get(bookIsbn);
 BigDecimal price = result.get(bookPrice);
 ...
}

This code is manifestly completely typesafe, and much better than we can hope to do with HQL.

5.15. Named queries

The @NamedQuery annotation lets us define a HQL query that is compiled and checked as part of the bootstrap process. This means
we find out about errors in our queries earlier, instead of waiting until the query is actually executed. We can place the @NamedQuery
annotation on any class, even on an entity class.

@NamedQuery(name="10BooksByTitle",
 query="from Book where title like :titlePattern order by title fetch first 10 rows only")
class BookQueries {}

We have to make sure that the class with the @NamedQuery annotation will be scanned by Hibernate, either:

• by adding <class>org.hibernate.example.BookQueries</class> to persistence.xml, or
• by calling configuration.addClass(BookQueries.class).

 Unfortunately, JPA’s @NamedQuery annotation can’t be placed on a package descriptor. Therefore, Hibernate
provides a very similar annotation, @org.hibernate.annotations.NamedQuery which can be specified at the
package level. If we declare a named query at the package level, we must call:

configuration.addPackage("org.hibernate.example")

so that Hibernate knows where to find it.

The @NamedNativeQuery annotation lets us do the same for native SQL queries. There’s much less advantage to using

64

@NamedNativeQuery, because there is very little that Hibernate can do to validate the correctness of a query written in the native SQL
dialect of your database.

Table 40. Executing named queries

Kind Session method EntityManager method Query execution method

Selection createNamedSelectionQuery(String,Class) createNamedQuery(String,Class) getResultList(),
getSingleResult(), or
getSingleResultOrNull()

Mutation createNamedMutationQuery(String) createNamedQuery(String) executeUpdate()

We execute our named query like this:

List<Book> books =
 entityManager.createNamedQuery("10BooksByTitle")
 .setParameter("titlePattern", titlePattern)
 .getResultList()

Note that the code which executes the named query is not aware of whether the query was written in HQL or in native SQL, making
it slightly easier to change and optimize the query later.

 It’s nice to have our queries checked at startup time. It’s even better to have them checked at compile time. Back
in [generated-query-methods], we mentioned that the Query Validator can do that for us. In fact, the Query
Validator will even check HQL query strings that occur as arguments to createQuery() and friends. So if we use
the Query Validator, there’s not much advantage to the use of named queries.

5.16. Controlling lookup by id

We can do almost anything via HQL, criteria, or native SQL queries. But when we already know the identifier of the entity we need, a
query can feel like overkill. And queries don’t make efficient use of the second level cache.

We met the find() method earlier. It’s the most basic way to perform a lookup by id. But as we also already saw, it can’t quite do
everything. Therefore, Hibernate has some APIs that streamline certain more complicated lookups:

Table 41. Operations for lookup by id

Method name Purpose

byId() Lets us specify association fetching via an EntityGraph, as we saw; also lets us specify some
additional options, including how the lookup interacts with the second level cache, and
whether the entity should be loaded in read-only mode

byMultipleIds() Lets us load a batch of ids at the same time

Batch loading is very useful when we need to retrieve multiple instances of the same entity class by id:

var graph = session.createEntityGraph(Book.class);
graph.addSubgraph(Book_.publisher);

List<Book> books =
 session.byMultipleIds(Book.class)
 .withFetchGraph(graph) // control association fetching
 .withBatchSize(20) // specify an explicit batch size
 .with(CacheMode.GET) // control interaction with the cache
 .multiLoad(bookIds);

The given list of bookIds will be broken into batches, and each batch will be fetched from the database in a single select. If we don’t
specify the batch size explicitly, a batch size will be chosen automatically.

We also have some operations for working with lookups by natural id:

Method name Purpose

bySimpleNaturalId() For an entity with just one attribute is annotated @NaturalId

65

https://github.com/hibernate/query-validator/

Method name Purpose

byNaturalId() For an entity with multiple attributes are annotated @NaturalId

byMultipleNaturalId() Lets us load a batch of natural ids at the same time

Here’s how we can retrieve an entity by its composite natural id:

Book book =
 session.byNaturalId(Book.class)
 .using(Book_.isbn, isbn)
 .using(Book_.printing, printing)
 .load();

Notice that this code fragment is completely typesafe, again thanks to the Metamodel Generator.

5.17. Interacting directly with JDBC

From time to time we run into the need to write some code that calls JDBC directly. Unfortunately, JPA offers no good way to do
this, but the Hibernate Session does.

session.doWork(connection -> {
 try (var callable = connection.prepareCall("{call myproc(?)}")) {
 callable.setLong(1, argument);
 callable.execute();
 }
});

The Connection passed to the work is the same connection being used by the session, and so any work performed using that
connection occurs in the same transaction context.

If the work returns a value, use doReturningWork() instead of doWork().

 In a container environment where transactions and database connections are managed by the container, this
might not be the easiest way to obtain the JDBC connection.

5.18. What to do when things go wrong

Object/relational mapping has been called the "Vietnam of computer science". The person who made this analogy is American, and
so one supposes that he meant to imply some kind of unwinnable war. This is quite ironic, since at the very moment he made this
comment, Hibernate was already on the brink of winning the war.

Today, Vietnam is a peaceful country with exploding per-capita GDP, and ORM is a solved problem. That said, Hibernate is complex,
and ORM still presents many pitfalls for the inexperienced, even occasionally for the experienced. Sometimes things go wrong.

In this section we’ll quickly sketch some general strategies for avoiding "quagmires".

• Understand SQL and the relational model. Know the capabilities of your RDBMS. Work closely with the DBA if you’re lucky
enough to have one. Hibernate is not about "transparent persistence" for Java objects. It’s about making two excellent
technologies work smoothly together.

• Log the SQL executed by Hibernate. You cannot know that your persistence logic is correct until you’ve actually inspected the
SQL that’s being executed. Even when everything seems to be "working", there might be a lurking N+1 selects monster.

• Be careful when modifying bidirectional associations. In principle, you should update both ends of the association. But
Hibernate doesn’t strictly enforce that, since there are some situations where such a rule would be too heavy-handed. Whatever
the case, it’s up to you to maintain consistency across your model.

• Never leak a persistence context across threads or concurrent transactions. Have a strategy or framework to guarantee this
never happens.

• When running queries that return large result sets, take care to consider the size of the session cache. Consider using a stateless
session.

• Think carefully about the semantics of the second-level cache, and how the caching policies impact transaction isolation.
• Avoid fancy bells and whistles you don’t need. Hibernate is incredibly feature-rich, and that’s a good thing, because it serves the

needs of a huge number of users, many of whom have one or two very specialized needs. But nobody has all those specialized
needs. In all probability, you have none of them. Write your domain model in the simplest way that’s reasonable, using the
simplest mapping strategies that make sense.

• When something isn’t behaving as you expect, simplify. Isolate the problem. Find the absolute minimum test case which

66

reproduces the behavior, before asking for help online. Most of the time, the mere act of isolating the problem will suggest an
obvious solution.

• Avoid frameworks and libraries that "wrap" JPA. If there’s any one criticism of Hibernate and ORM that sometimes does ring true,
it’s that it takes you too far from direct control over JDBC. An additional layer just takes you even further.

• Avoid copy/pasting code from random bloggers or stackoverflow reply guys. Many of the suggestions you’ll find online just
aren’t the simplest solution, and many aren’t correct for Hibernate 6. Instead, understand what you’re doing; study the Javadoc
of the APIs you’re using; read the JPA specification; follow the advice we give in this document; go direct to the Hibernate team
on Zulip. (Sure, we can be a bit cantankerous at times, but we do always want you to be successful.)

• Always consider other options. You don’t have to use Hibernate for everything.

67

Chapter 6. Tuning and performance

Once you have a program up and running using Hibernate to access the database, it’s inevitable that you’ll find places where
performance is disappointing or unacceptable.

Fortunately, most performance problems are relatively easy to solve with the tools that Hibernate makes available to you, as long as
you keep a couple of simple principles in mind.

First and most important: the reason you’re using Hibernate is that it makes things easier. If, for a certain problem, it’s making
things harder, stop using it. Solve this problem with a different tool instead.

 Just because you’re using Hibernate in your program doesn’t mean you have to use it everywhere.

Second: there are two main potential sources of performance bottlenecks in a program that uses Hibernate:

• too many round trips to the database, and
• memory consumption associated with the first-level (session) cache.

So performance tuning primarily involves reducing the number of accesses to the database, and/or controlling the size of the
session cache.

But before we get to those more advanced topics, we should start by tuning the connection pool.

6.1. Tuning the connection pool

The connection pool built in to Hibernate is suitable for testing, but isn’t intended for use in production. Instead, Hibernate supports
a range of different connection pools, including our favorite, Agroal.

To select and configure Agroal, you’ll need to set some extra configuration properties, in addition to the settings we already saw in
Basic configuration settings. Properties with the prefix hibernate.agroal are passed through to Agroal:

configure Agroal connection pool
hibernate.agroal.maxSize 20
hibernate.agroal.minSize 10
hibernate.agroal.acquisitionTimeout PT1s
hibernate.agroal.reapTimeout PT10s

As long as you set at least one property with the prefix hibernate.agroal, the AgroalConnectionProvider will be selected
automatically. There’s many to choose from:

Table 42. Settings for configuring Agroal

Configuration property name Purpose

hibernate.agroal.maxSize The maximum number of connections present on the pool

hibernate.agroal.minSize The minimum number of connections present on the pool

hibernate.agroal.initialSize The number of connections added to the pool when it is started

hibernate.agroal.maxLifetime The maximum amount of time a connection can live, after which it is removed from
the pool

hibernate.agroal.acquisitionTimeout The maximum amount of time a thread can wait for a connection, after which an
exception is thrown instead

hibernate.agroal.reapTimeout The duration for eviction of idle connections

hibernate.agroal.leakTimeout The duration of time a connection can be held without causing a leak to be reported

hibernate.agroal.idleValidationTimeout A foreground validation is executed if a connection has been idle on the pool for
longer than this duration

hibernate.agroal.validationTimeout The interval between background validation checks

hibernate.agroal.initialSql A SQL command to be executed when a connection is created

The following settings are common to all connection pools supported by Hibernate:

68

Table 43. Common settings for connection pools

hibernate.connection.autocommit The default autocommit mode

hibernate.connection.isolation The default transaction isolation level

Container-managed datasources

In a container environment, you usually don’t need to configure a connection pool through Hibernate. Instead, you’ll use a
container-managed datasource, as we saw in Basic configuration settings.

6.2. Enabling statement batching

An easy way to improve performance of some transactions, with almost no work at all, is to turn on automatic DML statement
batching. Batching only helps in cases where a program executes many inserts, updates, or deletes against the same table in a
single transaction.

All we need to do is set a single property:

Table 44. Enabling JDBC batching

Configuration property name Purpose Alternative

hibernate.jdbc.batch_size Maximum batch size for SQL statement batching setJdbcBatchSize()

 Even better than DML statement batching is the use of HQL update or delete queries, or even native SQL that calls
a stored procedure!

6.3. Association fetching

Achieving high performance in ORM means minimizing the number of round trips to the database. This goal should be uppermost in
your mind whenever you’re writing data access code with Hibernate. The most fundamental rule of thumb in ORM is:

• explicitly specify all the data you’re going to need right at the start of a session/transaction, and fetch it immediately in one or
two queries,

• and only then start navigating associations between persistent entities.

Without question, the most common cause of poorly-performing data access code in Java programs is the problem of N+1 selects.
Here, a list of N rows is retrieved from the database in an initial query, and then associated instances of a related entity are fetched
using N subsequent queries.

 This isn’t a bug or limitation of Hibernate; this problem even affects typical handwritten JDBC code behind DAOs.
Only you, the developer, can solve this problem, because only you know ahead of time what data you’re going to
need in a given unit of work. But that’s OK. Hibernate gives you all the tools you need.

In this section we’re going to discuss different ways to avoid such "chatty" interaction with the database.

69

Hibernate provides several strategies for efficiently fetching associations and avoiding N+1 selects:

• outer join fetching—where an association is fetched using a left outer join,
• batch fetching—where an association is fetched using a subsequent select with a batch of primary keys, and
• subselect fetching—where an association is fetched using a subsequent select with keys re-queried in a subselect.

Of these, you should almost always use outer join fetching. But let’s consider the alternatives first.

6.4. Batch fetching and subselect fetching

Consider the following code:

List<Book> books =
 session.createSelectionQuery("from Book order by isbn", Book.class)
 .getResultList();
books.forEach(book -> book.getAuthors().forEach(author -> out.println(book.title + " by " + author.name)));

This code is very inefficient, resulting, by default, in the execution of N+1 select statements, where n is the number of Books.

Let’s see how we can improve on that.

SQL for batch fetching

With batch fetching enabled, Hibernate might execute the following SQL on PostgreSQL:

/* initial query for Books */
select b1_0.isbn,b1_0.price,b1_0.published,b1_0.publisher_id,b1_0.title
from Book b1_0
order by b1_0.isbn

/* first batch of associated Authors */
select a1_0.books_isbn,a1_1.id,a1_1.bio,a1_1.name
from Book_Author a1_0
 join Author a1_1 on a1_1.id=a1_0.authors_id
where a1_0.books_isbn = any (?)

/* second batch of associated Authors */
select a1_0.books_isbn,a1_1.id,a1_1.bio,a1_1.name
from Book_Author a1_0
 join Author a1_1 on a1_1.id=a1_0.authors_id
where a1_0.books_isbn = any (?)

The first select statement queries and retrieves Books. The second and third queries fetch the associated Authors in batches. The
number of batches required depends on the configured batch size. Here, two batches were required, so two SQL statements were
executed.

 The SQL for batch fetching looks slightly different depending on the database. Here, on PostgreSQL, Hibernate
passes a batch of primary key values as a SQL ARRAY.

SQL for subselect fetching

On the other hand, with subselect fetching, Hibernate would execute this SQL:

/* initial query for Books */
select b1_0.isbn,b1_0.price,b1_0.published,b1_0.publisher_id,b1_0.title
from Book b1_0
order by b1_0.isbn

/* fetch all associated Authors */
select a1_0.books_isbn,a1_1.id,a1_1.bio,a1_1.name
from Book_Author a1_0
 join Author a1_1 on a1_1.id=a1_0.authors_id
where a1_0.books_isbn in (select b1_0.isbn from Book b1_0)

Notice that the first query is re-executed in a subselect in the second query. The execution of the subselect is likely to be relatively
inexpensive, since the data should already be cached by the database. Clever, huh?

70

Enabling the use of batch or subselect fetching

Both batch fetching and subselect fetching are disabled by default, but we may enable one or the other globally using properties.

Table 45. Configuration settings to enable batch and subselect fetching

Configuration property name Property value Alternatives

hibernate.default_batch_fetch_size A sensible batch size >1 to enable batch fetching @BatchSize(), setFetchBatchSize()

Alternatively, we can enable one or the other in a given session:

session.setFetchBatchSize(5);

 We may request subselect fetching more selectively by annotating a collection or many-valued association with
the @Fetch annotation.

@ManyToMany @Fetch(SUBSELECT)
Set<Author> authors;

Note that @Fetch(SUBSELECT) has the same effect as @Fetch(SELECT), except after execution of a HQL or criteria
query. But after query execution, @Fetch(SUBSELECT) is able to much more efficiently fetch associations.

Later, we’ll see how we can use fetch profiles to do this even more selectively.

That’s all there is to it. Too easy, right?

Sadly, that’s not the end of the story. While batch fetching might mitigate problems involving N+1 selects, it won’t solve them. The
truly correct solution is to fetch associations using joins. Batch fetching (or subselect fetching) can only be the best solution in rare
cases where outer join fetching would result in a cartesian product and a huge result set.

But batch fetching and subselect fetching have one important characteristic in common: they can be performed lazily. This is, in
principle, pretty convenient. When we query data, and then navigate an object graph, lazy fetching saves us the effort of planning
ahead. It turns out that this is a convenience we’re going to have to surrender.

6.5. Join fetching

Outer join fetching is usually the best way to fetch associations, and it’s what we use most of the time. Unfortunately, by its very
nature, join fetching simply can’t be lazy. So to make use of join fetching, we must plan ahead. Our general advice is:

 Avoid the use of lazy fetching, which is often the source of N+1 selects.

Now, we’re not saying that associations should be mapped for eager fetching by default! That would be a terrible idea, resulting in
simple session operations that fetch almost the entire database. Therefore:

 Most associations should be mapped for lazy fetching by default.

It sounds as if this tip is in contradiction to the previous one, but it’s not. It’s saying that you must explicitly specify eager fetching for
associations precisely when and where they are needed.

If we need eager join fetching in some particular transaction, we have four different ways to specify that.

Passing a JPA EntityGraph We’ve already seen this in Entity graphs and eager fetching

Specifying a named fetch profile We’ll discuss this approach later in Named fetch profiles

Using left join fetch in HQL/JPQL See A guide to Hibernate Query Language 6 for details

Using From.fetch() in a criteria query Same semantics as join fetch in HQL

Typically, a query is the most convenient option. Here’s how we can ask for join fetching in HQL:

List<Book> booksWithJoinFetchedAuthors =
 session.createSelectionQuery("from Book join fetch authors order by isbn")
 .getResultList();

71

And this is the same query, written using the criteria API:

var builder = sessionFactory.getCriteriaBuilder();
var query = builder.createQuery(Book.class);
var book = query.from(Book.class);
book.fetch(Book_.authors);
query.select(book);
query.orderBy(builder.asc(book.get(Book_.isbn)));
List<Book> booksWithJoinFetchedAuthors =
 session.createSelectionQuery(query).getResultList();

Either way, a single SQL select statement is executed:

select b1_0.isbn,a1_0.books_isbn,a1_1.id,a1_1.bio,a1_1.name,b1_0.price,b1_0.published,b1_0.publisher_id,b1_0
.title
from Book b1_0
 join (Book_Author a1_0 join Author a1_1 on a1_1.id=a1_0.authors_id)
 on b1_0.isbn=a1_0.books_isbn
order by b1_0.isbn

Much better!

Join fetching, despite its non-lazy nature, is clearly more efficient than either batch or subselect fetching, and this is the source of
our recommendation to avoid the use of lazy fetching.

 There’s one interesting case where join fetching becomes inefficient: when we fetch two many-values
associations in parallel. Imagine we wanted to fetch both Author.books and Author.royaltyStatements in some
unit of work. Joining both collections in a single query would result in a cartesian product of tables, and a large
SQL result set. Subselect fetching comes to the rescue here, allowing us to fetch books using a join, and
royaltyStatements using a single subsequent select.

Of course, an alternative way to avoid many round trips to the database is to cache the data we need in the Java client. If we’re
expecting to find the associated data in a local cache, we probably don’t need join fetching at all.

 But what if we can’t be certain that all associated data will be in the cache? In that case, we might be able to
reduce the cost of cache misses by enabling batch fetching.

6.6. The second-level cache

A classic way to reduce the number of accesses to the database is to use a second-level cache, allowing data cached in memory to
be shared between sessions.

By nature, a second-level cache tends to undermine the ACID properties of transaction processing in a relational database. We don’t
use a distributed transaction with two-phase commit to ensure that changes to the cache and database happen atomically. So a
second-level cache is often by far the easiest way to improve the performance of a system, but only at the cost of making it much
more difficult to reason about concurrency. And so the cache is a potential source of bugs which are difficult to isolate and
reproduce.

Therefore, by default, an entity is not eligible for storage in the second-level cache. We must explicitly mark each entity that will be
stored in the second-level cache with the @Cache annotation from org.hibernate.annotations.

But that’s still not enough. Hibernate does not itself contain an implementation of a second-level cache, so it’s necessary to
configure an external cache provider.

 Caching is disabled by default. To minimize the risk of data loss, we force you to stop and think before any entity
goes into the cache.

Hibernate segments the second-level cache into named regions, one for each:

• mapped entity hierarchy or
• collection role.

For example, there might be separate cache regions for Author, Book, Author.books, and Book.authors.

Each region is permitted its own policies for expiry, persistence, and replication. These policies must be configured externally to
Hibernate.

The appropriate policies depend on the kind of data an entity represents. For example, a program might have different caching

72

policies for "reference" data, for transactional data, and for data used for analytics. Ordinarily, the implementation of those policies
is the responsibility of the underlying cache implementation.

6.7. Specifying which data is cached

By default, no data is eligible for storage in the second-level cache.

An entity hierarchy or collection role may be assigned a region using the @Cache annotation. If no region name is explicitly specified,
the region name is just the name of the entity class or collection role.

@Entity
@Cache(usage=NONSTRICT_READ_WRITE, region="Publishers")
class Publisher {
 ...

 @Cache(usage=READ_WRITE, region="PublishedBooks")
 @OneToMany(mappedBy=Book_.PUBLISHER)
 Set<Book> books;

 ...
}

The cache defined by a @Cache annotation is automatically utilized by Hibernate to:

• retrieve an entity by id when find() is called, or
• to resolve an association by id.

 The @Cache annotation must be specified on the root class of an entity inheritance hierarchy. It’s an error to place
it on a subclass entity.

The @Cache annotation always specifies a CacheConcurrencyStrategy, a policy governing access to the second-level cache by
concurrent transactions.

Table 46. Cache concurrency

Concurrency policy Interpretation Explanation

READ_ONLY • Immutable data
• Read-only access

Indicates that the cached object is immutable, and is never
updated. If an entity with this cache concurrency is updated, an
exception is thrown.

This is the simplest, safest, and best-performing cache
concurrency strategy. It’s particularly suitable for so-called
"reference" data.

NONSTRICT_READ_WRITE • Concurrent updates are extremely
improbable

• Read/write access with no locking

Indicates that the cached object is sometimes updated, but that
it’s extremely unlikely that two transactions will attempt to update
the same item of data at the same time.

This strategy does not use locks. When an item is updated, the
cache is invalidated both before and after completion of the
updating transaction. But without locking, it’s impossible to
completely rule out the possibility of a second transaction storing
or retrieving stale data in or from the cache during the completion
process of the first transaction.

73

Concurrency policy Interpretation Explanation

READ_WRITE • Concurrent updates are possible
but not common

• Read/write access using soft locks

Indicates a non-vanishing likelihood that two concurrent
transactions attempt to update the same item of data
simultaneously.

This strategy uses "soft" locks to prevent concurrent transactions
from retrieving or storing a stale item from or in the cache during
the transaction completion process. A soft lock is simply a marker
entry placed in the cache while the updating transaction
completes.

• A second transaction may not read the item from the cache
while the soft lock is present, and instead simply proceeds to
read the item directly from the database, exactly as if a regular
cache miss had occurred.

• Similarly, the soft lock also prevents this second transaction
from storing a stale item to the cache when it returns from its
round trip to the database with something that might not quite
be the latest version.

TRANSACTIONAL • Concurrent updates are frequent
• Transactional access

Indicates that concurrent writes are common, and the only way to
maintain synchronization between the second-level cache and the
database is via the use of a fully transactional cache provider. In
this case, the cache and the database must cooperate via JTA or
the XA protocol, and Hibernate itself takes on little responsibility
for maintaining the integrity of the cache.

Which policies make sense may also depend on the underlying second-level cache implementation.

 JPA has a similar annotation, named @Cacheable. Unfortunately, it’s almost useless to us, since:

• it provides no way to specify any information about the nature of the cached entity and how its cache should
be managed, and

• it may not be used to annotate associations, and so we can’t even use it to mark collection roles as eligible for
storage in the second-level cache.

6.8. Caching by natural id

If our entity has a natural id, we can enable an additional cache, which holds cross-references from natural id to primary id, by
annotating the entity @NaturalIdCache. By default, the natural id cache is stored in a dedicated region of the second-level cache,
separate from the cached entity data.

@Entity
@Cache(usage=READ_WRITE, region="Book")
@NaturalIdCache(region="BookIsbn")
class Book {
 ...
 @NaturalId
 String isbn;

 @NaturalId
 int printing;
 ...
}

This cache is utilized when the entity is retrieved using one of the operations of Session which performs lookup by natural id.

 Since the natural id cache doesn’t contain the actual state of the entity, it doesn’t make sense to annotate an
entity @NaturalIdCache unless it’s already eligible for storage in the second-level cache, that is, unless it’s also
annotated @Cache.

It’s worth noticing that, unlike the primary identifier of an entity, a natural id might be mutable.

We must now consider a subtlety that often arises when we have to deal with so-called "reference data", that is, data which fits
easily in memory, and doesn’t change much.

74

6.9. Caching and association fetching

Let’s consider again our Publisher class:

@Cache(usage=NONSTRICT_READ_WRITE, region="Publishers")
@Entity
class Publisher { ... }

Data about publishers doesn’t change very often, and there aren’t so many of them. Suppose we’ve set everything up so that the
publishers are almost always available in the second-level cache.

Then in this case we need to think carefully about associations of type Publisher.

@ManyToOne
Publisher publisher;

There’s no need for this association to be lazily fetched, since we’re expecting it to be available in memory, so we won’t set it
fetch=LAZY. But on the other hand, if we leave it marked for eager fetching then, by default, Hibernate will often fetch it using a join.
This places completely unnecessary load on the database.

The solution is the @Fetch annotation:

@ManyToOne @Fetch(SELECT)
Publisher publisher;

By annotating the association @Fetch(SELECT), we suppress join fetching, giving Hibernate a chance to find the associated
Publisher in the cache.

Therefore, we arrive at this rule of thumb:

 Many-to-one associations to "reference data", or to any other data that will almost always be available in the
cache, should be mapped EAGER,SELECT.

Other associations, as we’ve already made clear, should be LAZY.

Once we’ve marked an entity or collection as eligible for storage in the second-level cache, we still need to set up an actual cache.

6.10. Configuring the second-level cache provider

Configuring a second-level cache provider is a rather involved topic, and quite outside the scope of this document. But in case it
helps, we often test Hibernate with the following configuration, which uses EHCache as the cache implementation, as above in
Optional dependencies:

Table 47. EHCache configuration

Configuration property name Property value

hibernate.cache.region.factory_class jcache

hibernate.javax.cache.uri /ehcache.xml

If you’re using EHCache, you’ll also need to include an ehcache.xml file that explicitly configures the behavior of each cache region
belonging to your entities and collections. You’ll find more information about configuring EHCache here.

We may use any other implementation of JCache, such as Caffeine. JCache automatically selects whichever implementation it finds
on the classpath. If there are multiple implementations on the classpath, we must disambiguate using:

Table 48. Disambiguating the JCache implementation

Configuration property name Property value

hibernate.javax.cache.provider The implementation of javax.cache.spiCachingProvider, for example:

org.ehcache.jsr107.EhcacheCachingProvider for EHCache

com.github.benmanes.caffeine.jcache.spi.CaffeineCachingProvider for Caffeine

75

https://www.ehcache.org/documentation/
https://github.com/ben-manes/caffeine/

Alternatively, to use Infinispan as the cache implementation, the following settings are required:

Table 49. Infinispan provider configuration

Configuration property name Property value

hibernate.cache.region.factory_class infinispan

hibernate.cache.infinispan.cfg Path to infinispan configuration file, for example:

org/infinispan/hibernate/cache/commons/builder/inf
inispan-configs.xml

for a distributed cache

org/infinispan/hibernate/cache/commons/builder/inf
inispan-configs-local.xml

to test with local cache

Infinispan is usually used when distributed caching is required. There’s more about using Infinispan with Hibernate here.

Finally, there’s a way to globally disable the second-level cache:

Table 50. Setting to disable caching

Configuration property name Property value

hibernate.cache.use_second_level_cache true to enable caching, or false to disable it

When hibernate.cache.region.factory_class is set, this property defaults to true.

 This setting lets us easily disable the second-level cache completely when troubleshooting or profiling
performance.

You can find much more information about the second-level cache in the User Guide.

6.11. Caching query result sets

The caches we’ve described above are only used to optimize lookups by id or by natural id. Hibernate also has a way to cache the
result sets of queries, though this is only rarely an efficient thing to do.

The query cache must be enabled explicitly:

Table 51. Setting to enable the query cache

Configuration property name Property value

hibernate.cache.use_query_cache true to enable the query cache

To cache the results of a query, call SelectionQuery.setCacheable(true):

session.createQuery("from Product where discontinued = false")
 .setCacheable(true)
 .getResultList();

By default, the query result set is stored in a cache region named default-query-results-region. Since different queries should
have different caching policies, it’s common to explicitly specify a region name:

session.createQuery("from Product where discontinued = false")
 .setCacheable(true)
 .setCacheRegion("ProductCatalog")
 .getResultList();

A result set is cached together with a logical timestamp. By "logical", we mean that it doesn’t actually increase linearly with time,
and in particular it’s not the system time.

When a Product is updated, Hibernate does not go through the query cache and invalidate every cached result set that’s affected by
the change. Instead, there’s a special region of the cache which holds a logical timestamp of the most-recent update to each table.
This is called the update timestamps cache, and it’s kept in the region default-update-timestamps-region.

76

https://infinispan.org/docs/stable/titles/hibernate/hibernate.html
https://docs.jboss.org/hibernate/orm/6.2/userguide/html_single/Hibernate_User_Guide.html#caching

 It’s your responsibility to ensure that this cache region is configured with appropriate policies. In particular,
update timestamps should never expire or be evicted.

When a query result set is read from the cache, Hibernate compares its timestamp with the timestamp of each of the tables that
affect the results of the query, and only returns the result set if the result set isn’t stale. If the result set is stale, Hibernate goes ahead
and re-executes the query against the database and updates the cached result set.

As is generally the case with any second-level cache, the query cache can break the ACID properties of transactions.

6.12. Second-level cache management

For the most part, the second-level cache is transparent. Program logic which interacts with the Hibernate session is unaware of the
cache, and is not impacted by changes to caching policies.

At worst, interaction with the cache may be controlled by specifying of an explicit CacheMode:

session.setCacheMode(CacheMode.IGNORE);

Or, using JPA-standard APIs:

entityManager.setCacheRetrieveMode(CacheRetrieveMode.BYPASS);
entityManager.setCacheStoreMode(CacheStoreMode.BYPASS);

The JPA-defined cache modes come in two flavors: CacheRetrieveMode and CacheStoreMode.

Table 52. JPA-defined cache retrieval modes

Mode Interpretation

CacheRetrieveMode.USE Read data from the cache if available

CacheRetrieveMode.BYPASS Don’t read data from the cache; go direct to the database

We might select CacheRetrieveMode.BYPASS if we’re concerned about the possibility of reading stale data from the cache.

Table 53. JPA-defined cache storage modes

Mode Interpretation

CacheStoreMode.USE Write data to the cache when read from the database or when modified; do not update already-
cached items when reading

CacheStoreMode.REFRESH Write data to the cache when read from the database or when modified; always update cached
items when reading

CacheStoreMode.BYPASS Don’t write data to the cache

We should select CacheStoreMode.BYPASS if we’re querying data that doesn’t need to be cached.

 It’s a good idea to set the CacheStoreMode to BYPASS just before running a query which returns a large result set full
of data that we don’t expect to need again soon. This saves work, and prevents the newly-read data from pushing
out the previously cached data.

In JPA we would use this idiom:

entityManager.setCacheStoreMode(CacheStoreMode.BYPASS);
List<Publisher> allpubs =
 entityManager.createQuery("from Publisher", Publisher.class)
 .getResultList();
entityManager.setCacheStoreMode(CacheStoreMode.USE);

But Hibernate has a better way:

List<Publisher> allpubs =
 session.createSelectionQuery("from Publisher", Publisher.class)
 .setCacheStoreMode(CacheStoreMode.BYPASS)

77

 .getResultList();

A Hibernate CacheMode packages a CacheRetrieveMode with a CacheStoreMode.

Table 54. Hibernate cache modes and JPA equivalents

Hibernate CacheMode Equivalent JPA modes

NORMAL CacheRetrieveMode.USE, CacheStoreMode.USE

IGNORE CacheRetrieveMode.BYPASS, CacheStoreMode.BYPASS

GET CacheRetrieveMode.USE, CacheStoreMode.BYPASS

PUT CacheRetrieveMode.BYPASS, CacheStoreMode.USE

REFRESH CacheRetrieveMode.REFRESH, CacheStoreMode.BYPASS

There’s no particular reason to prefer Hibernate’s CacheMode over the JPA equivalents. This enumeration only exists because
Hibernate had cache modes long before they were added to JPA.

 For "reference" data, that is, for data which is expected to always be found in the second-level cache, it’s a good
idea to prime the cache at startup. There’s a really easy way to do this: just execute a query immediately after
obtaining the EntityManager or SessionFactory.

SessionFactory sessionFactory =
 setupHibernate(new Configuration())
 .buildSessionFactory();
// prime the second-level cache
sessionFactory.inSession(session -> {
 session.createSelectionQuery("from Countries"))
 .setReadOnly(true)
 .getResultList();
 session.createSelectionQuery("from Product where discontinued = false"))
 .setReadOnly(true)
 .getResultList();
});

Very occasionally, it’s necessary or advantageous to control the cache explicitly, for example, to evict some data that we know to be
stale. The Cache interface allows programmatic eviction of cached items.

sessionFactory.getCache().evictEntityData(Book.class, bookId);

 Second-level cache management via the Cache interface is not transaction-aware. None of the operations of Cache
respect any isolation or transactional semantics associated with the underlying caches. In particular, eviction via
the methods of this interface causes an immediate "hard" removal outside any current transaction and/or locking
scheme.

Ordinarily, however, Hibernate automatically evicts or updates cached data after modifications, and, in addition, cached data which
is unused will eventually be expired according to the configured policies.

This is quite different to what happens with the first-level cache.

6.13. Session cache management

Entity instances aren’t automatically evicted from the session cache when they’re no longer needed. Instead, they stay pinned in
memory until the session they belong to is discarded by your program.

The methods detach() and clear() allow you to remove entities from the session cache, making them available for garbage
collection. Since most sessions are rather short-lived, you won’t need these operations very often. And if you find yourself thinking
you do need them in a certain situation, you should strongly consider an alternative solution: a stateless session.

6.14. Stateless sessions

An arguably-underappreciated feature of Hibernate is the StatelessSession interface, which provides a command-oriented, more
bare-metal approach to interacting with the database.

78

You may obtain a reactive stateless session from the SessionFactory:

Stage.StatelessSession ss = getSessionFactory().openStatelessSession();

A stateless session:

• doesn’t have a first-level cache (persistence context), nor does it interact with any second-level caches, and
• doesn’t implement transactional write-behind or automatic dirty checking, so all operations are executed immediately when

they’re explicitly called.

For a stateless session, we’re always working with detached objects. Thus, the programming model is a bit different:

Table 55. Important methods of the StatelessSession

Method name and parameters Effect

get(Class, Object) Obtain a detached object, given its type and its id, by executing a select

fetch(Object) Fetch an association of a detached object

refresh(Object) Refresh the state of a detached object by executing a select

insert(Object) Immediately insert the state of the given transient object into the database

update(Object) Immediately update the state of the given detached object in the database

delete(Object) Immediately delete the state of the given detached object from the database

`upsert(Object)1 Immediately insert or update the state of the given detached object using a SQL merge into
statement

 There’s no flush() operation, and so update() is always explicit.

In certain circumstances, this makes stateless sessions easier to work with, but with the caveat that a stateless session is much more
vulnerable to data aliasing effects, since it’s easy to get two non-identical Java objects which both represent the same row of a
database table.

 If we use fetch() in a stateless session, we can very easily obtain two objects representing the same database
row!

In particular, the absence of a persistence context means that we can safely perform bulk-processing tasks without allocating huge
quantities of memory. Use of a StatelessSession alleviates the need to call:

• clear() or detach() to perform first-level cache management, and
• setCacheMode() to bypass interaction with the second-level cache.

 Stateless sessions can be useful, but for bulk operations on huge datasets, Hibernate can’t possibly compete with
stored procedures!

When using a stateless session, you should be aware of the following additional limitations:

• persistence operations never cascade to associated instances,
• changes to @ManyToMany associations and @ElementCollections cannot be made persistent, and
• operations performed via a stateless session bypass callbacks.

6.15. Optimistic and pessimistic locking

Finally, an aspect of behavior under load that we didn’t mention above is row-level data contention. When many transactions try to
read and update the same data, the program might become unresponsive with lock escalation, deadlocks, and lock acquisition
timeout errors.

There’s two basic approaches to data concurrency in Hibernate:

• optimistic locking using @Version columns, and
• database-level pessimistic locking using the SQL for update syntax (or equivalent).

79

In the Hibernate community it’s much more common to use optimistic locking, and Hibernate makes that incredibly easy.

 Where possible, in a multiuser system, avoid holding a pessimistic lock across a user interaction. Indeed, the usual
practice is to avoid having transactions that span user interactions. For multiuser systems, optimistic locking is
king.

That said, there is also a place for pessimistic locks, which can sometimes reduce the probability of transaction rollbacks.

Therefore, the find(), lock(), and refresh() methods of the reactive session accept an optional LockMode. We can also specify a
LockMode for a query. The lock mode can be used to request a pessimistic lock, or to customize the behavior of optimistic locking:

Table 56. Optimistic and pessimistic lock modes

LockMode type Meaning

READ An optimistic lock obtained implicitly whenever an entity is read from the database using select

OPTIMISTIC An optimistic lock obtained when an entity is read from the database, and verified using a select to
check the version when the transaction completes

OPTIMISTIC_FORCE_INCREMENT An optimistic lock obtained when an entity is read from the database, and enforced using an update
to increment the version when the transaction completes

WRITE A pessimistic lock obtained implicitly whenever an entity is written to the database using update or
insert

PESSIMISTIC_READ A pessimistic for share lock

PESSIMISTIC_WRITE A pessimistic for update lock

PESSIMISTIC_FORCE_INCREMENT A pessimistic lock enforced using an immediate update to increment the version

6.16. Collecting statistics

We may ask Hibernate to collect statistics about its activity by setting this configuration property:

Configuration property name Property value

hibernate.generate_statistics true to enable collection of statistics

The statistics are exposed by the Statistics object:

long failedVersionChecks =
 sessionFactory.getStatistics()
 .getOptimisticFailureCount();

long publisherCacheMissCount =
 sessionFactory.getStatistics()
 .getEntityStatistics(Publisher.class.getName())
 .getCacheMissCount()

Hibernate’s statistics enable observability. Both Micrometer and SmallRye Metrics are capable of exposing these metrics.

6.17. Tracking down slow queries

When a poorly-performing SQL query is discovered in production, it can sometimes be hard to track down exactly where in the Java
code the query originates. Hibernate offers two configuration properties that can make it easier to identify a slow query and find its
source.

Table 57. Settings for tracking slow queries

Configuration property name Purpose Property value

hibernate.log_slow_query Log slow queries at the INFO level The minimum execution time, in milliseconds,
which characterizes a "slow" query

80

https://quarkus.io/guides/micrometer
https://quarkus.io/guides/microprofile-metrics

Configuration property name Purpose Property value

hibernate.use_sql_comments Prepend comments to the executed SQL true or false

When hibernate.use_sql_comments is enabled, the text of the HQL query is prepended as a comment to the generated SQL, which
usually makes it easy to find the HQL in the Java code.

The comment text may be customized:

• by calling Query.setComment(comment) or Query.setHint(AvailableHints.HINT_COMMENT,comment), or
• via the @NamedQuery annotation.

6.18. Reactive programming with Hibernate

Finally, many systems which require high scalability now make use of reactive programming and reactive streams. Hibernate
Reactive brings O/R mapping to the world of reactive programming. You can learn much more about Hibernate Reactive from its
Reference Documentation.

 Hibernate Reactive may be used alongside vanilla Hibernate in the same program, and can reuse the same entity
classes. This means you can use the reactive programming model exactly where you need it—perhaps only in one
or two places in your system. You don’t need to rewrite your whole program using reactive streams.

81

https://hibernate.org/reactive/
https://hibernate.org/reactive/
https://hibernate.org/reactive/documentation/2.0/reference/html_single/

Chapter 7. Advanced Topics

In the last chapter of this Introduction, we turn to some topics that don’t really belong in an introduction. Here we consider some
problems, and solutions, that you’re probably not going to run into immediately if you’re new to Hibernate. But we do want you to
know about them, so that when the time comes, you’ll know what tool to reach for.

7.1. Filters

Filters are one of the nicest and under-usedest features of Hibernate, and we’re quite proud of them. A filter is a named, globally-
defined, parameterized restriction on the data that is visible in a given session.

Examples of well-defined filters might include:

• a filter that restricts the data visible to a given user according to row-level permissions,
• a filter which hides data which has been soft-deleted,
• in a versioned database, a filter that displays versions which were current at a given instant in the past, or
• a filter that restricts to data associated with a certain geographical region.

A filter must be declared somewhere. A package descriptor is as good a place as any:

@FilterDef(name = "ByRegion",
 parameters = @ParamDef(name = "region", type = String.class))
package org.hibernate.example;

This filter has one parameter. Fancier filters might in principle have multiple parameters, though we admit this must be quite rare.

 If you add annotations to a package descriptor, and you’re using Configuration to configure Hibernate, make
sure you call Configuration.addPackage() to let Hibernate know that the package descriptor is annotated.

Typically, but not necessarily, a @FilterDef specifies a default restriction:

@FilterDef(name = "ByRegion",
 parameters = @ParamDef(name = "region", type = String.class),
 defaultCondition = "region = :region")
package org.hibernate.example;

The restriction must contain a reference to the parameter of the filter, specified using the usual syntax for named parameters.

Any entity or collection which is affected by a filter must be annotated @Filter:

@Entity
@Filter(name = example_.BY_REGION)
class User {

 @Id String username;

 String region;

 ...
}

If the @Filter annotation does not explicitly specify a restriction, the default restriction given by the @FilterDef will be applied to
the entity. But an entity is free to override the default condition.

@Entity
@Filter(name = "ByRegion", condition = "name = :region")
class Region {

 @Id String name;

 ...
}

Note that the restriction specified by the condition or defaultCondition is a native SQL expression.

82

Table 58. Annotations for defining filters

Annotation Purpose

@FilterDef Defines a filter and declares its name (exactly one per filter)

@Filter Specifies how a filter applies to a given entity or collection (many per filter)

By default, a new session comes with every filter disabled. A filter may be explicitly enabled in a given session by calling
enableFilter() and assigning arguments to the parameters of the filter. You should do this right at the start of the session.

sessionFactory.inTransaction(session -> {
 session.enableFilter("ByRegion")
 .setParameter("region", "es")
 .validate();

 ...
});

Now, any queries executed within the session will have the filter restriction applied. Collections annotated @Filter will also have
their members correctly filtered.

 On the other hand, filters are not applied to @ManyToOne associations, nor to find(). This is completely by design
and is not in any way a bug.

More than one filter may be enabled in a given session.

We’ve mentioned that a filter can be used to implement versioning, and to provide historical views of the data. Being such a general-
purpose construct, filters provide a lot of flexibility here. But if you’re after a more focused/opinionated solution to this problem,
you should definitely check out Envers.

Using Envers for auditing historical data

Envers is an add-on to Hibernate ORM which keeps a historical record of each versioned entity in a separate audit table, and
allows past revisions of the data to be viewed and queried. A full introduction to Envers would require a whole chapter, so
we’ll just give you a quick taste here.

First, we must mark an entity as versioned, using the @Audited annotation:

@Audited @Entity
@Table(name="CurrentDocument")
@AuditTable("DocumentRevision")
class Document { ... }

 The @AuditTable annotation is optional, and it’s better to set either
org.hibernate.envers.audit_table_prefix or org.hibernate.envers.audit_table_suffix and let the
audit table name be inferred.

The AuditReader interface exposes operations for retrieving and querying historical revisions. It’s really easy to get hold of
one of these:

AuditReader reader = AuditReaderFactory.get(entityManager);

Envers tracks revisions of the data via a global revision number. We may easily find the revision number which was current at a
given instant:

Number revision = reader.getRevisionNumberForDate(datetime);

We can use the revision number to ask for the version of our entity associated with the given revision number:

Document doc = reader.find(Document.class, id, revision);

Alternatively, we can directly ask for the version which was current at a given instant:

83

https://hibernate.org/orm/envers/

Document doc = reader.find(Document.class, id, datetime);

We can even execute queries to obtain lists of entities current at the given revision number:

List documents =
 reader.createQuery()
 .forEntitiesAtRevision(Document.class, revision)
 .getResultList();

For much more information, see the User Guide.

Another closely-related problem is multi-tenancy.

7.2. Multi-tenancy

A multi-tenant database is one where the data is segregated by tenant. We don’t need to actually define what a "tenant" really
represents here; all we care about at this level of abstraction is that each tenant may be distinguished by a unique identifier. And
that there’s a well-defined current tenant in each session.

We may specify the current tenant when we open a session:

var session =
 sessionFactory.withOptions()
 .tenantIdentifier(tenantId)
 .openSession();

Or, when using JPA-standard APIs:

var entityManager =
 entityManagerFactory.createEntityManager(Map.of(HibernateHints.HINT_TENANT_ID, tenantId));

However, since we often don’t have this level of control over creation of the session, it’s more common to supply an implementation
of CurrentTenantIdentifierResolver to Hibernate.

There are three common ways to implement multi-tenancy:

1. each tenant has its own database,
2. each tenant has its own schema, or
3. tenants share tables in a single schema, and rows are tagged with the tenant id.

From the point of view of Hibernate, there’s little difference between the first two options. Hibernate will need to obtain a JDBC
connection with permissions on the database and schema owned by the current tenant.

Therefore, we must implement a MultiTenantConnectionProvider which takes on this responsibility:

• from time to time, Hibernate will ask for a connection, passing the id of the current tenant, and then we must create an
appropriate connection or obtain one from a pool, and return it to Hibernate, and

• later, Hibernate will release the connection and ask us to destroy it or return it to the appropriate pool.

 Check out DataSourceBasedMultiTenantConnectionProviderImpl for inspiration.

The third option is quite different. In this case we don’t need a MultiTenantConnectionProvider, but we will need a dedicated
column holding the tenant id mapped by each of our entities.

@Entity
class Account {
 @Id String id;
 @TenantId String tenantId;

 ...
}

The @TenantId annotation is used to indicate an attribute of an entity which holds the tenant id. Within a given session, our data is
automatically filtered so that only rows tagged with the tenant id of the current tenant are visible in that session.

84

https://docs.jboss.org/hibernate/orm/6.2/userguide/html_single/Hibernate_User_Guide.html#envers

 Native SQL queries are not automatically filtered by tenant id; you’ll have to do that part yourself.

Table 59. Multi-tenancy configuration

Configuration property name Purpose

hibernate.tenant_identifier_resolver Specifies the CurrentTenantIdentifierResolver

hibernate.multi_tenant_connection_provider Specifies the MultiTenantConnectionProvider

 If you only need to filter rows by a static condition with no parameters, @Where is a much simpler way to do that.

7.3. Using custom-written SQL

We’ve already discussed how to run queries written in SQL, but occasionally that’s not enough. Sometimes—but much less often
than you might expect—we would like to customize the SQL used by Hibernate to perform basic CRUD operations for an entity or
collection.

For this we can use @SQLInsert and friends:

@Entity
@SQLInsert(sql = "insert into person (name, id, valid) values (?, ?, true)", check = COUNT)
@SQLUpdate(sql = "update person set name = ? where id = ?")
@SQLDelete(sql = "update person set valid = false where id = ?")
@SQLSelect(sql = "select id, name from person where id = ? and valid = true")
public static class Person { ... }

 If the custom SQL should be executed via a CallableStatement, just specify callable=true.

Any SQL statement specified by one of these annotations must have exactly the number of JDBC parameters that Hibernate expects,
that is, one for each column mapped by the entity, in the exact order Hibernate expects. In particular, the primary key columns must
come last.

However, the @Column annotation does lend some flexibility here:

• if a column should not be written as part of the custom insert statement, and has no corresponding JDBC parameter in the
custom SQL, map it @Column(insertable=false), or

• if a column should not be written as part of the custom update statement, and has no corresponding JDBC parameter in the
custom SQL, map it @Column(updatable=false).

 If you need custom SQL, but are targeting multiple dialects of SQL, you can use the annotations defined in
DialectOverrides. For example, this annotation lets us override the custom insert statement just for PostgreSQL:

@DialectOverride.SQLInsert(dialect = PostgreSQLDialect.class,
 override = @SQLInsert(sql="insert into person (name,id) values (?,gen_random_uuid())"))

It’s even possible to override the custom SQL for specific versions of a database.

Sometimes a custom insert or update statement assigns a value to a mapped column which is calculated when the statement is
executed on the database. For example, the value might be obtained by calling a SQL function:

@SQLInsert(sql = "insert into person (name, id) values (?, gen_random_uuid())")

But the entity instance which represents the row being inserted or updated won’t be automatically populated with that value. And
so our persistence context loses synchronization with the database. In situations like this, we may use the @Generated annotation to
tell Hibernate to reread the state of the entity after each insert or update.

7.4. Handling database-generated columns

Sometimes, a column value is assigned or mutated by events that happen in the database, and aren’t visible to Hibernate. For
example:

• a table might have a column value populated by a trigger,

85

• a mapped column might have a default value defined in DDL, or
• a custom SQL insert or update statement might assign a value to a mapped column, as we saw in the previous subsection.

One way to deal with this situation is to explicitly call refresh() at appropriate moments, forcing the session to reread the state of
the entity. But this is annoying.

The @Generated annotation relieves us of the burden of explicitly calling refresh(). It specifies that the value of the annotated entity
attribute is generated by the database, and that the generated value should be automatically retrieved using a SQL returning
clause, or separate select after it is generated.

A useful example is the following mapping:

@Entity
class Entity {
 @Generated @Id
 @ColumnDefault("gen_random_uuid()")
 UUID id;
}

The generated DDL is:

create table Entity (
 id uuid default gen_random_uuid() not null,
 primary key (uuid)
)

So here the value of id is defined by the column default clause, by calling the PostgreSQL function gen_random_uuid().

When a column value is generated during updates, use @Generated(event=UPDATE). When a value is generated by both inserts and
updates, use @Generated(event={INSERT,UPDATE}).

 For columns which should be generated using a SQL generated always as clause, prefer the @GeneratedColumn
annotation, so that Hibernate automatically generates the correct DDL.

Actually, the @Generated and @GeneratedColumn annotations are defined in terms of a more generic and user-extensible framework
for handling attribute values generated in Java, or by the database.

7.5. User-defined generators

JPA doesn’t define a standard way to extend the set of id generation strategies, but Hibernate does:

• the Generator hierarchy of interfaces in the package org.hibernate.generator lets you define new generators, and
• the @IdGeneratorType meta-annotation from the package org.hibernate.annotations lets you write an annotation which

associates a Generator type with identifier attributes.

Furthermore, the @ValueGenerationType meta-annotation lets you write an annotation which associates a Generator type with a
non-@Id attribute.

 These APIs are new in Hibernate 6, and supersede the classic IdentifierGenerator interface and
@GenericGenerator annotation from older versions of Hibernate. However, the older APIs are still available and
custom IdentifierGenerators written for older versions of Hibernate continue to work in Hibernate 6.

Hibernate has a range of built-in generators which are defined in terms of this new framework.

Table 60. Built-in generators

Annotation Implementation Purpose

@Generated GeneratedGeneration Generically handles database-generated values

@GeneratedColumn GeneratedAlwaysGeneration Handles values generated using generated always

@CurrentTimestamp CurrentTimestampGeneration Generic support for database or in-memory generation of creation or
update timestamps

@CreationTimestamp CurrentTimestampGeneration A timestamp generated when an entity is first made persistent

86

Annotation Implementation Purpose

@UpdateTimestamp CurrentTimestampGeneration A timestamp generated when an entity is made persistent, and
regenerated every time the entity is modified

@UuidGenerator UuidGenerator A more flexible generator for RFC 4122 UUIDs

Furthermore, support for JPA’s standard id generation strategies is also defined in terms of this framework.

As an example, let’s look at how @UuidGenerator is defined:

@IdGeneratorType(org.hibernate.id.uuid.UuidGenerator.class)
@ValueGenerationType(generatedBy = org.hibernate.id.uuid.UuidGenerator.class)
@Retention(RUNTIME)
@Target({ FIELD, METHOD })
public @interface UuidGenerator { ... }

@UuidGenerator is meta-annotated both @IdGeneratorType and @ValueGenerationType because it may be used to generate both ids
and values of regular attributes. Either way, this Generator class does the hard work:

public class UuidGenerator
 // this generator produced values before SQL is executed
 implements BeforeExecutionGenerator {

 // constructors accept an instance of the @UuidGenerator
 // annotation, allowing the generator to be "configured"

 // called to create an id generator
 public UuidGenerator(
 org.hibernate.annotations.UuidGenerator config,
 Member idMember,
 CustomIdGeneratorCreationContext creationContext) {
 this(config, idMember);
 }

 // called to create a generator for a regular attribute
 public UuidGenerator(
 org.hibernate.annotations.UuidGenerator config,
 Member member,
 GeneratorCreationContext creationContext) {
 this(config, idMember);
 }

 ...

 @Override
 public EnumSet<EventType> getEventTypes() {
 // UUIDs are only assigned on insert, and never regenerated
 return INSERT_ONLY;
 }

 @Override
 public Object generate(SharedSessionContractImplementor session, Object owner, Object currentValue,
EventType eventType) {
 // actually generate a UUID and transform it to the required type
 return valueTransformer.transform(generator.generateUuid(session));
 }
}

You can find out more about custom generators from the Javadoc for @IdGeneratorType and for org.hibernate.generator.

7.6. Naming strategies

When working with a pre-existing relational schema, it’s usual to find that the column and table naming conventions used in the
schema don’t match Java’s naming conventions.

Of course, the @Table and @Column annotations let us explicitly specify a mapped table or column name. But we would prefer to
avoid scattering these annotations across our whole domain model.

Therefore, Hibernate lets us define a mapping between Java naming conventions, and the naming conventions of the relational

87

schema. Such a mapping is called a naming strategy.

First, we need to understand how Hibernate assigns and processes names.

• Logical naming is the process of applying naming rules to determine the logical names of objects which were not explicitly
assigned names in the O/R mapping. That is, when there’s no @Table or @Column annotation.

• Physical naming is the process of applying additional rules to transform a logical name into an actual "physical" name that will
be used in the database. For example, the rules might include things like using standardized abbreviations, or trimming the
length of identifiers.

Thus, there’s two flavors of naming strategy, with slightly different responsibilities. Hibernate comes with default implementations
of these interfaces:

Flavor Default implementation

An ImplicitNamingStrategy is responsible for assigning a logical
name when none is specified by an annotation

A default strategy which implements the rules defined by JPA

A PhysicalNamingStrategy is responsible for transforming a logical
name and producing the name used in the database

A trivial implementation which does no processing

 We happen to not much like the naming rules defined by JPA, which specify that mixed case and camel case
identifiers should be concatenated using underscores. We bet you could easily come up with a much better
ImplicitNamingStrategy than that! (Hint: it should always produce legit mixed case identifiers.)

 A popular PhysicalNamingStrategy produces snake case identifiers.

Custom naming strategies may be enabled using the configuration properties we already mentioned without much explanation
back in Minimizing repetitive mapping information.

Table 61. Naming strategy configuration

Configuration property name Purpose

hibernate.implicit_naming_strategy Specifies the ImplicitNamingStrategy

hibernate.physical_naming_strategy Specifies the PhysicalNamingStrategy

7.7. Spatial datatypes

Hibernate Spatial augments the built-in basic types with a set of Java mappings for OGC spatial types.

• Geolatte-geom defines a set of Java types implementing the OGC spatial types, and codecs for translating to and from database-
native spatial datatypes.

• Hibernate Spatial itself supplies integration with Hibernate.

To use Hibernate Spatial, we must add it as a dependency, as described in Optional dependencies.

Then we may immediately use Geolatte-geom and JTS types in our entities. No special annotations are needed:

import org.locationtech.jts.geom.Point;
import jakarta.persistence.*;

@Entity
class Event {
 Event() {}

 Event(String name, Point location) {
 this.name = name;
 this.location = location;
 }

 @Id @GeneratedValue
 Long id;

 String name;

 Point location;

88

https://www.ogc.org
https://github.com/GeoLatte/geolatte-geom

}

The generated DDL uses geometry as the type of the column mapped by location:

create table Event (
 id bigint not null,
 location geometry,
 name varchar(255),
 primary key (id)
)

Hibernate Spatial lets us work with spatial types just as we would with any of the built-in basic attribute types.

var geometryFactory = new GeometryFactory();
...

Point point = geometryFactory.createPoint(new Coordinate(10, 5));
session.persist(new Event("Hibernate ORM presentation", point));

But what makes this powerful is that we may write some very fancy queries involving functions of spatial types:

Polygon triangle =
 geometryFactory.createPolygon(
 new Coordinate[] {
 new Coordinate(9, 4),
 new Coordinate(11, 4),
 new Coordinate(11, 20),
 new Coordinate(9, 4)
 }
);
Point event =
 session.createQuery("select location from Event where within(location, :zone) = true", Point.class)
 .setParameter("zone", triangle)
 .getSingleResult();

Here, within() is one of the functions for testing spatial relations defined by the OpenGIS specification. Other such functions include
touches(), intersects(), distance(), boundary(), etc. Not every spatial relation function is supported on every database. A matrix
of support for spatial relation functions may be found in the User Guide.

 If you want to play with spatial functions on H2, run the following code first:

sessionFactory.inTransaction(session -> {
 session.doWork(connection -> {
 try (var statement = connection.createStatement()) {
 statement.execute("create alias if not exists h2gis_spatial for
\"org.h2gis.functions.factory.H2GISFunctions.load\"");
 statement.execute("call h2gis_spatial()");
 }
 });
});

7.8. Ordered and sorted collections and map keys

Java lists and maps don’t map very naturally to foreign key relationships between tables, and so we tend to avoid using them to
represent associations between our entity classes. But if you feel like you really need a collection with a fancier structure than Set,
Hibernate does have options.

The first two options let us map the index of a List or key of a Map to a column:

Table 62. Annotations for mapping lists and maps

Annotation Purpose JPA-standard

@OrderColumn Specifies the column used to maintain the order of a list ✔

@MapKeyColumn Specifies the column used to persist the keys of a map ✔

89

https://docs.jboss.org/hibernate/orm/6.2/userguide/html_single/Hibernate_User_Guide.html#spatial-configuration-dialect-features

For an unowned association, the column must also be mapped on the owning side, usually by an attribute of the target entity.

Now, let’s introduce a little distinction:

• an ordered collection is one with an ordering maintained in the database, and
• a sorted collection is one which is sorted in Java code.

These annotations allow us to specify how the elements of a collection should be ordered as they are read from the database:

Table 63. Annotations for ordered collections

Annotation Purpose JPA-standard

@OrderBy Specifies a fragment of JPQL used to order the collection ✔

On the other hand, the following annotation specify how a collection should be sorted in memory, and are used for collections of
type SortedSet or SortedMap:

Table 64. Annotations for sorted collections

Annotation Purpose JPA-standard

@SortNatural Specifies that the elements of a collection are Comparable ✖

@SortComparator Specifies a Comparator used to sort the collection ✖

Under the covers, Hibernate uses a TreeSet or TreeMap to maintain the collection in sorted order.

7.9. Any mappings

An @Any mapping is a sort of polymorphic many-to-one association where the target entity types are not related by the usual entity
inheritance. The target type is distinguished using a discriminator value stored on the referring side of the relationship.

This is quite different to discriminated inheritance where the discriminator is held in the tables mapped by the referenced entity
hierarchy.

For example, consider an Order entity containing Payment information, where a Payment might be a CashPayment or a
CreditCardPayment:

interface Payment { ... }

@Entity
class CashPayment { ... }

@Entity
class CreditCardPayment { ... }

In this example, Payment is not be declared as an entity type, and is not annotated @Entity. It might even be an interface, or at most
just a mapped superclass, of CashPayment and CreditCardPayment. So in terms of the object/relational mappings, CashPayment and
CreditCardPayment would not be considered to participate in the same entity inheritance hierarchy.

On the other hand, CashPayment and CreditCardPayment do have the same identifier type. This is important.

An @Any mapping would store the discriminator value identifying the concrete type of Payment along with the state of the associated
Order, instead of storing it in the table mapped by Payment.

@Entity
class Order {
 ...

 @Any
 @AnyKeyJavaClass(UUID.class) //the foreign key type
 @JoinColumn(name="payment_id") // the foreign key column
 @Column(name="payment_type") // the discriminator column
 // map from discriminator values to target entity types
 @AnyDiscriminatorValue(discriminator="CASH", entity=CashPayment.class)
 @AnyDiscriminatorValue(discriminator="CREDIT", entity=CreditCardPayment.class)
 Payment payment;

 ...

90

}

It’s reasonable to think of the "foreign key" in an @Any mapping as a composite value made up of the foreign key and discriminator
taken together. Note, however, that this composite foreign key is only conceptual and cannot be declared as a physical constraint
on the relational database table.

There are a number of annotations which are useful to express this sort of complicated and unnatural mapping:

Table 65. Annotations for @Any mappings

Annotations Purpose

@Any Declares that an attribute is a discriminated polymorphic
association mapping

@AnyDiscriminator Specify the Java type of the discriminator

@JdbcType or @JdbcTypeCode Specify the JDBC type of the discriminator

@AnyDiscriminatorValue Specifies how discriminator values map to entity types

@Column or @Formula Specify the column or formula in which the discriminator value is
stored

@AnyKeyJavaType or @AnyKeyJavaClass Specify the Java type of the foreign key (that is, of the ids of the
target entities)

@AnyKeyJdbcType or @AnyKeyJdbcTypeCode Specify the JDBC type of the foreign key

@JoinColumn Specifies the foreign key column

Of course, @Any mappings are disfavored, except in extremely special cases, since it’s much more difficult to enforce referential
integrity at the database level.

There’s also currently some limitations around querying @Any associations in HQL. This is allowed:

from Order ord
 join CashPayment cash
 on id(ord.payment) = cash.id

 Polymorphic association joins for @Any mappings are not currently implemented.

7.10. Selective column lists in inserts and updates

By default, Hibernate generates insert and update statements for each entity during boostrap, and reuses the same insert
statement every time an instance of the entity is made persistent, and the same update statement every time an instance of the
entity is modified.

This means that:

• if an attribute is null when the entity is made persistent, its mapped column is redundantly included in the SQL insert, and
• worse, if a certain attribute is unmodified when other attributes are changed, the column mapped by that attribute is

redundantly included in the SQL update.

Most of the time this just isn’t an issue worth worrying about. The cost of interacting with the database is usually dominated by the
cost of a round trip, not by the number of columns in the insert or update. But in cases where it does become important, there are
two ways to be more selective about which columns are included in the SQL.

The JPA-standard way is to indicate statically which columns are eligible for inclusion via the @Column annotation. For example, if an
entity is always created with an immutable creationDate, and with no completionDate, then we would write:

@Column(updatable=false) LocalDate creationDate;
@Column(insertable=false) LocalDate completionDate;

This approach works quite well in many cases, but often breaks down for entities with more than a handful of updatable columns.

An alternative solution is to ask Hibernate to generate SQL dynamically each time an insert or update is executed. We do this by

91

annotating the entity class.

Table 66. Annotations for dynamic SQL generation

Annotation Purpose

@DynamicInsert Specifies that an insert statement should be generated each time an entity is made persistent

@DynamicUpdate Specifies that an update statement should be generated each time an entity is modified

It’s important to realize that, while @DynamicInsert has no impact on semantics, the more useful @DynamicUpdate annotation does
have a subtle side effect.

 The wrinkle is that if an entity has no version property, @DynamicUpdate opens the possibility of two optimistic
transactions concurrently reading and selectively updating a given instance of the entity. In principle, this might
lead to a row with inconsistent column values after both optimistic transactions commit successfully.

Of course, this consideration doesn’t arise for entities with a @Version attribute.

 But there’s a solution! Well-designed relational schemas should have constraints to ensure data integrity. That’s
true no matter what measures we take to preserve integrity in our program logic. We may ask Hibernate to add a
check constraint to our table using the @Check annotation. Check constraints and foreign key constraints can help
ensure that a row never contains inconsistent column values.

7.11. Using the bytecode enhancer

Hibernate’s bytecode enhancer enables the following features:

• attribute-level lazy fetching for basic attributes annotated @Basic(fetch=LAZY) and for lazy non-polymorphic associations,
• interception-based—instead of the usual snapshot-based—detection of modifications.

To use the bytecode enhancer, we must add the Hibernate plugin to our gradle build:

plugins {
 id "org.hibernate.orm" version "6.2.2.Final"
}

hibernate { enhancement }

Consider this field:

@Entity
class Book {
 ...

 @Basic(optional = false, fetch = LAZY)
 @Column(length = LONG32)
 String fullText;

 ...
}

The fullText field maps to a clob or text column, depending on the SQL dialect. Since it’s expensive to retrieve the full book-length
text, we’ve mapped the field fetch=LAZY, telling Hibernate not to read the field until it’s actually used.

• Without the bytecode enhancer, this instruction is ignored, and the field is always fetched immediately, as part of the initial
select that retrieves the Book entity.

• With bytecode enhancement, Hibernate is able to detect access to the field, and lazy fetching is possible.

 By default, Hibernate fetches all lazy fields of a given entity at once, in a single select, when any one of them is
accessed. Using the @LazyGroup annotation, it’s possible to assign fields to distinct "fetch groups", so that
different lazy fields may be fetched independently.

Similarly, interception lets us implement lazy fetching for non-polymorphic associations without the need for a separate proxy
object. However, if an association is polymorphic, that is, if the target entity type has subclasses, then a proxy is still required.

Interception-based change detection is a nice performance optimization with a slight cost in terms of correctness.

92

https://docs.jboss.org/hibernate/orm/6.2/userguide/html_single/Hibernate_User_Guide.html#BytecodeEnhancement

• Without the bytecode enhancer, Hibernate keeps a snapshot of the state of each entity after reading from or writing to the
database. When the session flushes, the snapshot state is compared to the current state of the entity to determine if the entity
has been modified. Maintaining these snapshots does have an impact on performance.

• With bytecode enhancement, we may avoid this cost by intercepting writes to the field and recording these modifications as they
happen.

This optimization isn’t completely transparent, however.

 Interception-based change detection is less accurate than snapshot-based dirty checking. For example, consider
this attribute:

byte[] image;

Interception is able to detect writes to the image field, that is, replacement of the whole array. It’s not able to
detect modifications made directly to the elements of the array, and so such modifications may be lost.

7.12. Named fetch profiles

We’ve already seen two different ways to override the default fetching strategy for an association:

• JPA entity graphs, and
• the join fetch clause in HQL, or, equivalently, the method From.fetch() in the criteria query API.

A third way is to define a named fetch profile. First, we must declare the profile, by annotating a class or package:

@FetchProfile(name = "EagerBook")
@Entity
class Book { ... }

Note that even though we’ve placed this annotation on the Book entity, a fetch profile—unlike an entity graph—isn’t "rooted" at any
particular entity.

We may specify association fetching strategies using the fetchOverrides member of the @FetchProfile annotation.

 Similarly, a JPA entity graph may be defined using @NamedEntityGraph. But the format of this annotation is even
worse than @FetchProfile(fetchOverrides=…), so we can’t recommend it. Ὀ�

A better way is to annotate an association with the fetch profiles it should be fetched in:

@FetchProfile(name = "EagerBook", fetchOverrides = {
 @FetchProfile.FetchOverride(entity = Book.class, association = "publisher", mode = JOIN),
 @FetchProfile.FetchOverride(entity = Book.class, association = "authors", mode = JOIN),
 @FetchProfile.FetchOverride(entity = Author.class, association = "person", mode = JOIN)
})
@Entity
class Book {
 ...

 @ManyToOne(fetch = LAZY)
 Publisher publisher;

 @ManyToMany
 Set<Author> authors;

 ...
}

@Entity
class Author {
 ...

 @OneToOne
 Person person;

 ...
}

93

For collections, we may even request subselect fetching:

@FetchProfile(name = "EagerBook", fetchOverrides = {
 @FetchProfile.FetchOverride(entity = Book.class, association = "person", mode = JOIN),
 @FetchProfile.FetchOverride(entity = Book.class, association = "authors", mode = JOIN)
})
@FetchProfile(name = "BookWithAuthorsBySubselect", fetchOverrides = {
 @FetchProfile.FetchOverride(entity = Book.class, association = "authors", mode = SUBSELECT)
})
@Entity
class Book {
 ...

 @OneToOne
 Person person;

 @ManyToMany
 Set<Author> authors;

 ...
}

We may define as many different fetch profiles as we like.

Table 67. Annotations for defining fetch profiles

Annotation Purpose

@FetchProfile Declares a named fetch profile, optionally including a list of @FetchOverrides

@FetchProfile.FetchOverride Declares a fetch strategy override as part of the @FetchProfile declaration

A fetch profile must be explicitly enabled for a given session:

session.enableFetchProfile("EagerBook");
Book eagerBook = session.find(Book.class, bookId);

So why or when might we prefer named fetch profiles to entity graphs? Well, it’s really hard to say. It’s nice that this feature exists,
and if you love it, that’s great. But Hibernate offers alternatives that we think are more compelling most of the time.

The one and only advantage unique to fetch profiles is that they let us very selectively request subselect fetching. We can’t do that
with entity graphs, and we can’t do it with HQL. Unresolved directive in Hibernate_Introduction.adoc - include::Credits.adoc[]

94

	An Introduction to Hibernate 6
	Table of Contents
	Preface
	Chapter 1. Introduction
	1.1. Hibernate and JPA
	1.2. Writing Java code with Hibernate
	1.3. Hello, Hibernate
	1.4. Hello, JPA
	1.5. Organizing persistence logic
	1.6. Testing persistence logic
	1.7. Architecture and the persistence layer
	1.8. Overview

	Chapter 2. Configuration and bootstrap
	2.1. Including Hibernate in your project build
	2.2. Optional dependencies
	2.3. Configuration using JPA XML
	2.4. Configuration using Hibernate API
	2.5. Configuration using Hibernate properties file
	2.6. Basic configuration settings
	2.7. Automatic schema export
	2.8. Logging the generated SQL
	2.9. Minimizing repetitive mapping information
	2.10. Nationalized character data in SQL Server

	Chapter 3. Entities
	3.1. Entity classes
	3.2. Access types
	3.3. Entity class inheritance
	3.4. Identifier attributes
	3.5. Generated identifiers
	3.6. Natural keys as identifiers
	3.7. Composite identifiers
	3.8. Version attributes
	3.9. Natural id attributes
	3.10. Basic attributes
	3.11. Enumerated types
	3.12. Converters
	3.13. Compositional basic types
	3.14. Embeddable objects
	3.15. Associations
	3.16. Many-to-one
	3.17. One-to-one (first way)
	3.18. One-to-one (second way)
	3.19. Many-to-many
	3.20. Collections of basic values and embeddable objects
	3.21. Collections mapped to SQL arrays
	3.22. Collections mapped to a separate table
	3.23. Summary of annotations
	3.24. equals() and hashCode()

	Chapter 4. Object/relational mapping
	4.1. Mapping entity inheritance hierarchies
	4.2. Mapping to tables
	4.3. Mapping entities to tables
	4.4. Mapping associations to tables
	4.5. Mapping to columns
	4.6. Mapping basic attributes to columns
	4.7. Mapping associations to foreign key columns
	4.8. Mapping primary key joins between tables
	4.9. Column lengths and adaptive column types
	4.10. LOBs
	4.11. Mapping embeddable types to UDTs or to JSON
	4.12. Summary of SQL column type mappings
	4.13. Mapping to formulas

	Chapter 5. Interacting with the database
	5.1. Persistence Contexts
	5.2. Creating a session
	5.3. Managing transactions
	5.4. Operations on the persistence context
	5.5. Cascading persistence operations
	5.6. Proxies and lazy fetching
	5.7. Entity graphs and eager fetching
	5.8. Flushing the session
	5.9. Queries
	5.10. HQL queries
	5.11. Criteria queries
	5.12. Native SQL queries
	5.13. Limits, pagination, and ordering
	5.14. Representing projection lists
	5.15. Named queries
	5.16. Controlling lookup by id
	5.17. Interacting directly with JDBC
	5.18. What to do when things go wrong

	Chapter 6. Tuning and performance
	6.1. Tuning the connection pool
	6.2. Enabling statement batching
	6.3. Association fetching
	6.4. Batch fetching and subselect fetching
	6.5. Join fetching
	6.6. The second-level cache
	6.7. Specifying which data is cached
	6.8. Caching by natural id
	6.9. Caching and association fetching
	6.10. Configuring the second-level cache provider
	6.11. Caching query result sets
	6.12. Second-level cache management
	6.13. Session cache management
	6.14. Stateless sessions
	6.15. Optimistic and pessimistic locking
	6.16. Collecting statistics
	6.17. Tracking down slow queries
	6.18. Reactive programming with Hibernate

	Chapter 7. Advanced Topics
	7.1. Filters
	7.2. Multi-tenancy
	7.3. Using custom-written SQL
	7.4. Handling database-generated columns
	7.5. User-defined generators
	7.6. Naming strategies
	7.7. Spatial datatypes
	7.8. Ordered and sorted collections and map keys
	7.9. Any mappings
	7.10. Selective column lists in inserts and updates
	7.11. Using the bytecode enhancer
	7.12. Named fetch profiles

